α clustering in ²⁸Si probed through the identification of high-lying 0⁺ states
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Abstract
Background: Aspects of the nuclear structure of light α-conjugate nuclei have long been associated with nuclear clustering based on α particles and heavier α-conjugate systems such as ¹²C and ¹⁶O. Such structures are associated with strong deformation corresponding to superdeformed or even hyperdeformed bands. Superdeformed bands have been identified in ⁴⁰Ca and neighboring nuclei and find good description within shell model, mean-field, and α-cluster models. The utility of the α-cluster description may be probed further by extending such studies to more challenging cases comprising lighter α-conjugate nuclei such as ²⁴Mg, ²⁸Si, and ³²S.
Purpose: The purpose of this study is to look for the number and energy of isoscalar 0⁺ states in ²⁸Si. These states are the potential bandheads for superdeformed bands in ²⁸Si corresponding to the exotic structures of ²⁸Si. Of particular interest is locating the 0⁺ bandhead of the previously identified superdeformed band in ²⁸Si.
Methods: α-particle inelastic scattering from a natSi target at very forward angles including 0∘ has been performed at the iThemba Laboratory for Accelerator-Based Sciences in South Africa. Scattered particles corresponding to the excitation energy region of 6 to 14 MeV were momentum-analysed in the K600 magnetic spectrometer and detected at the focal plane using two multiwire drift chambers and two plastic scintillators.
Results: Several 0⁺ states have been identified above 9 MeV in ²⁸Si. A newly identified 9.71 MeV 0⁺ state is a strong candidate for the bandhead of the previously discussed superdeformed band. The multichannel dynamical symmetry of the semimicroscopic algebraic model predicts the spectrum of the excited 0⁺ states. The theoretical prediction is in good agreement with the experimental finding, supporting the assignment of the 9.71-MeV state as the bandhead of a superdeformed band.
Conclusion: Excited isoscalar 0⁺ states in ²⁸Si have been identified. The number of states observed in the present experiment shows good agreement with the prediction of the multichannel dynamical symmetry.
Description
CITATION: Adsley, P., et al. 2017. α clustering in ²⁸Si probed through the identification of high-lying 0⁺ states. Physical Review C, 95(2):1-8, doi:10.1103/PhysRevC.95.024319.
The original publication is available at https://journals.aps.org/prc
The original publication is available at https://journals.aps.org/prc
Keywords
Nuclear structure, Excited state chemistry, O+ states, Nuclear shapes, Cluster theory (Nuclear physics)
Citation
Adsley, P., et al. 2017. α clustering in ²⁸Si probed through the identification of high-lying 0⁺ states. Physical Review C, 95(2):1-8, doi:10.1103/PhysRevC.95.024319