Contributions to the theory of near-vector spaces, their geometry, and hyperstructures
dc.contributor.advisor | Howell, Karin-Therese | en_ZA |
dc.contributor.author | Rabie, Jacques | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Dept. of Applied Mathematics. | en_ZA |
dc.date.accessioned | 2022-10-25T19:51:56Z | |
dc.date.accessioned | 2023-01-16T12:41:12Z | |
dc.date.available | 2022-10-25T19:51:56Z | |
dc.date.available | 2023-01-16T12:41:12Z | |
dc.date.issued | 2022-12 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2022. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: This thesis expands on the theory and application of near-vector spaces — in particular, the underlying geometry of near-vector spaces is studied, and the theory of near-vector spaces is applied to hyperstructures. More specifically, a near-linear space is defined and some properties of these spaces are proved. It is shown that by adding some axioms, the nearaffine space, as defined by André, i s obtained. A correspondence is shown between subspaces of nearaffine spaces generated by near-vector spaces, and the cosets of subspaces of the corresponding near-vector space. As a highlight, some of the geometric results are used to prove an open problem in near-vector space theory, namely that a non-empty subset of a near-vector space that is closed under addition and scalar multiplication is a subspace of the near-vector space. The geometric work of this thesis is concluded with a first look into the projections of nearaffine s paces, a branch of the geometry that contains interesting avenues for future research. Next the theory of hyper near-vector spaces is developed. Hyper near-vector spaces are defined having similar properties to André’s near-vector space. Important concepts, including independence, the notion of a basis, regularity, and subhyperspaces are defined, and an analogue of the Decomposition Theorem, an important theorem in the study of near-vector spaces, is proved for these spaces. | en_ZA |
dc.description.abstract | AFRIKAANS OPSOMMING: Hierdie tesis bou op die teorie en toepassing van naby-vektorruimtes — besonderlik word die onderliggende meetkunde van naby-vektorruimtes bestudeer en die teorie van naby-vektorruimtes word toegepas op hiperstrukture. Spesifiek work ’n naby-lineêre ruimte gedefinieer en sommige eienskappe van hier- die ruimtes word bewys. Dit word bewys dat, deur sekere aksiomas by te las, die naby-affiene ruimte, soos gedefinieer deur André, verkry w ord. ’n Verwantskap tus- sen die deelruimtes van naby-affiene ruimtes gegenereer deur naby-vektorruimtes en die resklasse van die deelruimtes van die verwante naby-vektorruimte word be- wys. As ’n hoogtepunt word van die meetkundige resultate gebruik om ’n oop probleem op te los in naby-vektorruimteteorie, naamlik dat ’n nie-leë deelversa- meling van ’n naby-vektorruimte wat geslote is onder optelling en skalaarverme- nigvuldiging ’n deelruimte is van die naby-vektorruimte. Die meetkundige werk in dié tesis sluit af met ’n eerste bestudering van projeksies van naby-affiene ruimtes, ’n tak in die meetkunde wat interessante toekomstige navorsingsrigtings bevat. Volgende word die teorie agter hiper naby-vektorruimtes ontwikkel. Hiper naby- vektorruimtes word gedefinieer s oortgelyk a an A ndré s e n aby-vektorruimte. Be- langrike konsepte, insluitent onafhanklikheid, die begrip van ’n basis, regulêriteit en hiper-deelruimtes word gedefinieer e n ’ n analoog van die Ontbindingstelling, belangrik in die teorie van naby-vektorruimtes, word bewys vir hierdie ruimtes. | af_ZA |
dc.description.version | Doctoral | en_ZA |
dc.format.extent | vi, 84 pages | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/125917 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Near-vector spaces | en_ZA |
dc.subject | Nearaffine spaces | en_ZA |
dc.subject | Incidence geometry -- Mathematical models | en_ZA |
dc.subject | Hypergroups | en_ZA |
dc.subject | Hyper near-vector spaces | en_ZA |
dc.subject | Geometry, Differential | en_ZA |
dc.subject | Decomposition theorem -- Mathematical models | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Contributions to the theory of near-vector spaces, their geometry, and hyperstructures | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- rabie_theory_2022.pdf
- Size:
- 1.38 MB
- Format:
- Adobe Portable Document Format
- Description: