Browsing by Author "Oguntibeju, Oluwafemi O."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEffects of Anchomanes difformis on inflammation, apoptosis, and organ toxicity in STZ-induced diabetic cardiomyopathy(MDPI, 2020-02-08) Alabi, Toyin D.; Chegou, Novel N.; Brooks, Nicole L.; Oguntibeju, Oluwafemi O.ENGLISH ABSTRACT: Persistent hyperglycemia is known to cause enhanced generation of reactive oxygen species in diabetes. Several inflammatory cytokines are induced by oxidative stress, and their release also leads to increased oxidative stress; this makes oxidative stress one of the important factors in the development of chronic inflammation and other immune responses. These have been implicated in the development of diabetic complications such as nephropathy and cardiomyopathy. Anchomanes difformis has been shown to possess antioxidant and anti-inflammatory potentials. The present study investigated the immunomodulatory potential and the antiapoptotic ability of Anchomanes difformis to ameliorate heart toxicity and injury in type II diabetes. Two weeks of fructose (10%) administration followed by single intraperitoneal injection of streptozotocin (40 mg/kg) were used to induce type II diabetes in male Wistar rats. Leaf extract (aqueous) of Anchomanes difformis (200 and 400 mg/kg) was administered orally for six weeks. Blood glucose concentrations and body weights before and after interventions were determined. Interleukin (IL)-1β, IL-6, IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor alpha (TNFα) were measured in the heart homogenates. Catalase (CAT), superoxide dismutase (SOD), total protein, oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), and heart-type fatty acid-binding protein (H-FABP) levels were determined. Expressions of transcription factors (Nrf 2 and NFkB/p65) and apoptotic markers were also investigated in the heart. Anchomanes difformis administration reduced pro-inflammatory cytokines, increased anti-inflammatory markers, and enhanced antioxidant defense in the heart of diabetic treated animals. Anchomanes difformis is a new, promising therapeutic agent that can be explored for the treatment of pathological conditions associated with immune responses and will be a useful tool in the management of associated diabetic complications.
- ItemKolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses(BioMed Central, 2013-12) Ayepola, Omolola R.; Chegou, Novel N.; Brooks, Nicole L.; Oguntibeju, Oluwafemi O.Background: Chronic inflammation plays a crucial role in hyperglycemia-induced liver injury. Kolaviron (KV), a natural biflavonoid from Garcinia kola seeds have been shown to possess anti- inflammatory properties which has not been explored in diabetes. To our knowledge, this is the first study to investigate the effect of KV on pro-inflammatory proteins in the liver of diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) in male Wistar rats. Kolaviron (100 mg/kg) was administered orally five times a week for six weeks. The concentrations of cytokines and chemokine were measured using Bio-plex Pro™ magnetic bead-based assays (Bio-Rad Laboratories, Hercules, USA). Plasma glucose and serum biomarkers of liver dysfunction were analyzed with diagnostic kits in an automated clinical chemistry analyzer. Insulin concentration was estimated by radioimmunoassay (RIA). Result: Kolaviron (100mg/kg) treatment significantly ameliorated hyperglycemia and liver dysfunction. Serum levels of hepatic marker enzymes were significantly reduced in kolaviron treated diabetic rats. Kolaviron prevented diabetes induced increase in the hepatic levels of proinflammatory cytokines; interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF-α) and monocyte chemotactic protein (MCP-1). Conclusion: The results of this study demonstrate that the hepatoprotective effects of kolaviron in diabetic rats may be partly associated with its modulating effect on inflammatory responses.
- ItemVindoline effectively ameliorated diabetes-induced hepatotoxicity by docking oxidative stress, inflammation and hypertriglyceridemia in type 2 diabetes-induced male Wistar rats(Elsevier, 2019) Gobozaa, Mediline; Aboua, Yapo G.; Chegou, Novel N.; Oguntibeju, Oluwafemi O.ENGLISH ABSTRACT: Vindoline, an indole alkaloid present in the leaves of Catharanthus roseus plant, has been recently reported to have insulotropic effects. This present study evaluated the possible hepatoprotective effects of vindoline in a type 2 diabetes mellitus rat model. Diabetes mellitus was induced by exposing rats to 10% fructose water for two weeks followed by a single intraperitoneal injection of 40 mg/kg body weight of streptozotocin (STZ). Rats were randomly divided into six groups (n = 8) and treated daily for 6 weeks with the vehicle via oral gavage, vindoline (20 mg/kg) or glibenclamide (5 mg/kg). Weekly fasting blood glucose (FBG) levels and body weight were measured and recorded. Administration of vindoline significantly (p < 0.05) reduced FBG by 15% when compared to the diabetic controls. Vindoline significantly (p < 0.05) decreased diabetes-induced hepatic injury shown by decreased levels of serum alanine transferase (ALT) (-42%), aspartate aminotransferase (AST) (-42%) and alkaline phosphatase (-62%) compared to the diabetic controls. The oxygen radical absorbance capacity and the activities of superoxide dismutase (SOD) and catalase (CAT) were also improved following treatment with vindoline. The results also showed decreased levels of pro-inflammatory cytokines such as TNF-ɑ by (-41%) and IL-6 (-28%) which may have also contributed to the reduction of serum triglycerides (-65%) in the diabetic group treated with vindoline. Histopathological findings showed improvement of both the hepatic and pancreatic tissues following vindoline treatment. Overall, these findings suggest that vindoline may protect the diabetic hepatic tissue from injury via antioxidant, anti-inflammatory and anti-hypertriglyceredemia mechanisms thereby retarding the development of diabetic complications.