Browsing by Author "Jenkins, D. G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemSearch for highly excited states in ²⁸Si(IOP Publishing, 2017) Montanari, D.; Courtin, S.; Jenkins, D. G.; Diget, C.; Yavuzkanat, N.; Neveling, R.; Mira, J. P.; Nemulodi, F.; Smit, F. D.; Usman, I.; Papka, P.; Swartz, J. A.; Van Zyl, J. J.; Orce, N.The theoretical and experimental determination of superdeformed states in nuclei in the mass region A≤40 has been since a long time one of the major challenges of nuclear structure studies. Despite the considerable experimental and theoretical work dedicated to this topic, up to now superdeformed bands have been found in only two nuclei, ³⁶Ar and ⁴⁰Ca. While the experimental signature of the superdeformed nature of those states is irrefutable, their theoretical interpretation is still uncertain. In particular, it is not clear whether clusterisation is responsible of the onset of superdeformation. For this reason, we wanted to investigate an even lighter system, ²⁸Si, where a number of theoretical calculations predict the presence of superdeformation as an effect of the cluster structure of the nucleus.
- Itemα clustering in ²⁸Si probed through the identification of high-lying 0⁺ states(American Physical Society, 2017) Adsley, P.; Jenkins, D. G.; Cseh, J.; Dimitriova, S. S.; Brummer, J. W.; Li, K. C. W.; Marin-Lambarri, D. J.; Lukyanov, K.; Kheswa, N. Y.; Neveling, R.; Papka, P.; Pellegri, L.; Pesudo, V.; Pool, L. C.; Riczu, G.; Smit, F. D.; Van Zyl, J. J.; Zemlyanaya, E.Background: Aspects of the nuclear structure of light α-conjugate nuclei have long been associated with nuclear clustering based on α particles and heavier α-conjugate systems such as ¹²C and ¹⁶O. Such structures are associated with strong deformation corresponding to superdeformed or even hyperdeformed bands. Superdeformed bands have been identified in ⁴⁰Ca and neighboring nuclei and find good description within shell model, mean-field, and α-cluster models. The utility of the α-cluster description may be probed further by extending such studies to more challenging cases comprising lighter α-conjugate nuclei such as ²⁴Mg, ²⁸Si, and ³²S. Purpose: The purpose of this study is to look for the number and energy of isoscalar 0⁺ states in ²⁸Si. These states are the potential bandheads for superdeformed bands in ²⁸Si corresponding to the exotic structures of ²⁸Si. Of particular interest is locating the 0⁺ bandhead of the previously identified superdeformed band in ²⁸Si. Methods: α-particle inelastic scattering from a natSi target at very forward angles including 0∘ has been performed at the iThemba Laboratory for Accelerator-Based Sciences in South Africa. Scattered particles corresponding to the excitation energy region of 6 to 14 MeV were momentum-analysed in the K600 magnetic spectrometer and detected at the focal plane using two multiwire drift chambers and two plastic scintillators. Results: Several 0⁺ states have been identified above 9 MeV in ²⁸Si. A newly identified 9.71 MeV 0⁺ state is a strong candidate for the bandhead of the previously discussed superdeformed band. The multichannel dynamical symmetry of the semimicroscopic algebraic model predicts the spectrum of the excited 0⁺ states. The theoretical prediction is in good agreement with the experimental finding, supporting the assignment of the 9.71-MeV state as the bandhead of a superdeformed band. Conclusion: Excited isoscalar 0⁺ states in ²⁸Si have been identified. The number of states observed in the present experiment shows good agreement with the prediction of the multichannel dynamical symmetry.