Browsing by Author "Bradshaw, S. M."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemThe application of activated carbon for the adsorption and elution of platinum group metals from dilute cyanide leach solutions(Southern African Institute of Mining and Metallurgy, 2013) Snyders, C. A.; Mpinga, C. N.; Bradshaw, S. M.; Akdogan, G.; Eksteen, J. J.ENGLISH ABSTRACT: The research presented in this paper investigated the practical aspects of the recovery of platinum group metals (PGMs) from a dilute cyanide leach solution containing base metals, in a manner similar to that used for gold extraction in a typical CIP process, and focuses on both the adsorption and elution stages. The carrierphase extraction of precious metals using activated carbon offers significant advantages over other processes in terms of simplicity, the high pre-concentration factor, rapid phase separation, and relatively low capital and operating costs. As a sorbent, activated carbon is still by far the most important material because of its large surface area, high adsorption capacity, porous structure, negligible environmental toxicity, low cost, and high purity standards. Adsorption tests were conducted on a pregnant alkaline leach solution (0.15 ppm Pt, 0.38 ppm Pd, 0.1 ppm Au) resulting from cyanide extraction performed in column leach tests. The initial adsorption rates of Pt, Pd, and Au were very fast and recoveries of these three metals were approximately 90 per cent after 2 hours, and 100 per cent for Pt, 97.4 per cent for Pd, and 99.9 per cent for Au after 72 hours. The parameters that influence the extraction of PGMs and Au were examined to assess their relative importance during the adsorption process in order to provide the basis for process optimization. The concentration of thiocyanate was not identified as significant factor for PGMs adsorption, while Ni concentration was the most significant extraction process parameter. Base metal cyanide complexes adsorb and compete with the PGM complexes for sites on activated carbon, and while copper adsorption can be minimized by adjusting the residence time, Ni adsorbs at approximately the same rate as the PGMs, influencing the loading capacity and adsorption kinetics of the PGMs. The feasibility of eluting platinum and palladium cyanide complexes from activated carbon using an analogue of the AARL process was investigated. Platinum and palladium elute from activated carbon almost to completion in 4 to 5 bed volumes at 80°C, while the elution of gold at this temperature is slow, with a significant amount of gold still to be eluted after 16 bed volumes. The equilibrium loading of gold is exothermic in nature (Fleming and Nicol, 1984) which will result in an increase in gold elution kinetics with an increase in temperature at similar pre-treatment conditions. A similar result was found for the elution of Pt and Pd. Cyanide pre-treatment was found to have a significant influence on PGM elution. Higher cyanide concentration in the pre-treatment step results in more efficient elution up to a point, and results suggest the possibility of an optimum cyanide concentration, beyond which elution efficiency starts decreasing due to increased ionic strength.
- ItemApplications of microwave heating in mineral processing(Academy of Science of South Africa, 1999) Bradshaw, S. M.Many minerals are effective absorbers of microwave energy, whereas in general gangue materials are not. This suggests applying microwave heating to mineral processing to effect selective heating of mineral phases. Many mineral processing applications have been tested only on a laboratory scale; the engineering realities of large-scale operations have largely been overlooked. Of particular concern are the modest power outputs of industrial magnetrons relative to the power requirements in mineral processing operations, the high capital cost of microwave equipment and the poor penetration depth of microwaves. Review of these applications, and comparison with guidelines developed for successful microwave technology transfer, suggests that niche areas for microwave heating are in the processing of low-throughput concentrates, especially where volumetric heating leads to enhanced rates of energy transfer. The use of combined heating sources should be investigated.
- ItemCharacterization of precipitate formed during the removal of iron and precious metals from sulphate leach solutions(The Southern African Institute of Mining and Metallurgy, 2017-08) Coetzee, R.; Dorfling, C.; Bradshaw, S. M.ENGLISH ABSTRACT: Nickel sulphate leach solutions produced in the first leaching stage of base metal refineries contain impurities such as iron as well as precious metals (Rh, Ru, and Ir). Iron precipitation results in sludge formation, which needs to be controlled for efficient operation of downstream nickel recovery processes. Recovery of precious metals from the leach solution is also desired. This study aimed to evaluate the characteristics of the precipitate produced from a nickel sulphate leach solution containing 62.5–89.3 g/L Ni, 2.5 – 3.57 g/L Fe, and 10 mg/L of each of Rh, Ru, and Ir. Seeded precipitation from ferric-containing solutions resulted in precipitates with a d₅₀ particle size of 100.6 μm, which was two orders of magnitude larger than the reference goethite seed d₅₀particle size of 1.3 μm. The particle size distributions of the precipitates formed from ferrous solutions were similar to that of the reference goethite seed. The precipitates formed from ferrous-containing solutions at pH 2.5 and at pH 4 had increased micropore areas (72.8 m²/g and 87.1 m²/g, respectively) and decreased external specific surface areas (53.4 m²/g and 49.0 m²/g, respectively) compared to the goethite reference material (micropore surface area of 66.2 m2/g and external surface area of 64.8 m²/g). For ferric-containing solutions at pH 2.5, a decline in specific surface area from 131.0 m2/g to between 82.0 m²/g and 100.6 m²/g was caused by aggregation and molecular growth inside micropores. Instantaneous iron precipitation from ferric solutions at pH 4 resulted in an increased Brunauer-Emmett-Teller (BET) surface area of 156.5 m²/g due to poor ordering of crystal structure and a more amorphous surface structure. Iron oxide phases present in the precipitates had elemental compositions similar to ferrihydrite and schwertmannite. Sulphate inclusion was more prominent during the rapid precipitation from ferric solutions than during precipitation from ferrous solutions. The precipitate formed at pH 2.5 was overall more crystalline than the precipitate formed at pH 4.0; nickel entrainment also increased with an increase in pH. Rhodium- and rutheniumcontaining species were finely dispersed throughout the iron phases in the precipitates. Iridium precipitated primarily without the inclusion of iron or other precious metals; particles consisting of iridium (50–80 wt%), chloride, and oxygen were formed.
- ItemA generic, semi-empirical approach to the stochastic modelling of bath-type pyrometallurgical reactors(Stellenbosch : University of Stellenbosch, 2004-03) Eksteen, Jacobus Johannes; Reuter, M. A.; Bradshaw, S. M.; University of Stellenbosch. Faculty of Engineering. Dept. of Process Engineering; Jacobs, IvanENGLISH ABSTRACT: Bath type furnaces have become an established technology for the intensive smelting, converting and refining of primary and secondary raw materials. Since these furnaces normally have large inventories, long time constants and complex metallurgies, a dynamic model-based prediction strategy is the only feasible approach to operator decision support and process control. This dissertation presents a semi-empirical approach to the stochastic modelling of bath-type pyrometallurgical reactors, which leads to a generic model type called the Equilib-ARMAX model. The modelling approach is applied to three case studies: • A nickel-copper matte converting operation using a submerged lance injection reactor • A chromite smelting operation to produce high carbon ferrochrome using a direct current (DC) plasma smelting furnace • An ilmenite smelting operation to produce high titania slag and pig iron, using a direct current (DC) plasma smelting furnace. In each case, the industrial operations were analysed with regard to the practical and technological constraints which influence the type and quality of the process data. The fundamental process phenomena associated with each operation have been analysed to ascertain which fundamental variables should be included within the overall semi-empirical approach, without sacrificing model transparency, simplicity, accuracy and calculation time. It was considered that an overly complex model would be inappropriate given that data from industrial smelting operations show significant random variance. The thermochemistry and phase equilibria associated with each operation are discussed in detail, as they become the fundamental backbone of the semi-empirical models. The equilibria have been modelled with software that uses non-ideal solutions models and Gibbs free energy minimisation to predict the phase and chemical equilibria that could be expected for a given feed recipe and operating temperature. As the thermodynamic modelling software is not stable within an industrial environment, an artificial intelligent mapping technique has been developed to map process inputs to equilibrium outputs. A multi-layer perceptron neural network has been used as the convenient mapping method to represent equilibrium. The neural networks were trained using tens of thousands of feed recipes, where the feed component ratios were varied based on a 3N factorial design. The amounts and chemistries of all equilibrium phases could be calculated with high accuracies (R2 > 0.95) in all cases. Further stochastic analysis and modelling require additional information about the property distributions associated with each measurement. The homogeneities of the furnace products (slag, alloy and flue dust) critically influence the level of confidence that one can associate with plant measurements. The homogeneities were characterised for the DC plasma arc furnaces and they were benchmarked against a submerged arc furnace. It was found that the homogeneity varied per element, with silicon and sulphur tending to show highest variations in the alloy melts. The observation that the variation in these two elements are both high can partially be attributed to the fact that SiS evaporates from the bath surface, especially in regions close to the arc attachment zone. A significant negative correlation was found between the relative standard deviation per tap (using silicon) and the degree of superheat / subcooling of the alloy, indicating that the homogeneity can be strongly influenced by the changes in rheology due to subcooling below the liquidus (which leads to the precipitation of solid phases and increases the observed melt viscosity). Mixedness or homogeneity and data uncertainty are therefore inseparably linked. The relative standard deviations associated with the homogeneity characterisation, as well as known sampling and assaying variances were used to develop reconciled material balances based on measured plant data. Material balance closure was therefore obtained within the inherent uncertainties of the plant data. Biases in the plant data were identified simultaneously with data reconciliation. Moreover, it was shown using Fast Fourier Power Spectra and statespace analysis that the data reconciliation was a good low-pass filter, as it extracted the major process trends components in the noisy data and it also improved the overall dynamic behaviour characteristics of the data. Finally systems identification techniques were used to develop dynamic transfer function models that were linear in the parameters to be estimated. These systems models were based on the reconciled plant data and equilibrium predictions. The final systems models are therefore equilibrium-autoregressive-moving-average models with exogenous variables (Equilib-ARMAX). The model parameters can be estimated recursively using a simple least squares method. The final models could dynamically predict the metallurgy of the subsequent tap 4-6 hours in advance, based on a given suite of set-points, within the inherent accuracy of the data. These models may be used to suggest the optimal operating conditions through an operator guidance system, or more simply, the models are simple enough to be used in a spreadsheet on a manager's desk.
- ItemGold CIP and CIL process optimization in a capital constraint environment(The Southern African Institute of Mining and Metallurgy, 2017-05) Snyders, C. A.; Akdogan, G.; Bradshaw, S. M.; Van Wyk, A. P.ENGLISH ABSTRACT: This article focuses on the use of a model in combination with economic analysis to extract maximum value out of current gold operations, without the need for additional capital. Two South African case studies (CIP and CIL) are presented to show that an optimum point of operation exists. This optimum point of operation, however, depends on several economic factors such as the gold price, exchange rate, and utility costs in combination with plant conditions such as the feed rate and Au grade. As these parameters fluctuate, the operating conditions will have to be adjusted to achieve the maximum value. Operating at a maximum will require regular decisionmaking and adjusting of operating conditions, especially in times of a constrained economy.
- ItemInvestigating the behaviour of PGEs during first-stage leaching of a Ni-Fe-Cu-S converter matte(Southern African Institute of Mining and Metallurgy, 2018) Snyders, C. A.; Akdogan, G.; Thompson, G.; Bradshaw, S. M.; Van Wyk, A. P.ENGLISH ABSTRACT: In a first-stage atmospheric leach in a Sherritt Ni-Cu matte leach process, a Ni-Cu-Fe-S Peirce-Smith converter matte is contacted with recycled aqueous copper sulphate/sulphuric acid solution (spent solution) with the purpose of dissolving nickel, while simultaneously removing copper (via metathesis and cementation reactions) from solution. While the iron content has been found to have a significant impact on the first-stage leach, a previously expected relationship between copper and PGM behaviour has not been established clearly. For this study, a converter matte consisting mainly of heazlewoodite (Ni3S2), chalcocite (Cu2S), and awaruite (Ni3Fe) was leached in a laboratory-scale batch reactor. The temperature, acid, and copper concentration under both oxidative and non-oxidative conditions were varied, while the copper, iron, and PGEs were tracked and the pH and Eh measured. Palladium was generally found to be closely related to the behaviour of copper, while platinum did not leach. The other platinum group metals such as iridium and rhodium were found to precipitate only with accelerated precipitation being observed during Fe precipitation reactions.
- ItemInvestigation of flow regime transition in a column flotation cell using CFD(Southern African Institute of Mining and Metallurgy, 2019-02) Mwandawande, I.; Akdogan, G.; Bradshaw, S. M.; Karimi, M.; Snyders, N.ENGLISH ABSTRACT: Flotation columns are normally operated at optimal superficial gas velocities to maintain bubbly flow conditions. However, with increasing superficial gas velocity, loss of bubbly flow may occur with adverse effects on column performance. It is therefore important to identify the maximum superficial gas velocity above which loss of bubbly flow occurs. The maximum superficial gas velocity is usually obtained from a gas holdup versus superficial gas velocity plot in which the linear portion of the graph represents bubbly flow while deviation from the linear relationship indicates a change from the bubbly flow to the churn-turbulent regime. However, this method is difficult to use when the transition from bubbly flow to churn-turbulent flow is gradual, as happens in the presence of frothers. We present two alternative methods in which the flow regime in the column is distinguished by means of radial gas holdup profiles and gas holdup versus time graphs obtained from CFD simulations. Bubbly flow was characterized by saddle-shaped profiles with three distinct peaks, or saddle-shaped profiles with two near-wall peaks and a central minimum, or flat profiles with intermediate features between saddle and parabolic gas holdup profiles. The transition regime was gradual and characterized by flat to parabolic gas holdup profiles that become steeper with increasing superficial gas velocity. The churn-turbulent flow was distinguished by steep parabolic radial gas holdup profiles. Gas holdup versus time graphs were also used to define flow regimes with a constant gas holdup indicating bubbly flow, while wide gas holdup variations indicate churn-turbulent flow.
- ItemPhysical and numerical modelling of a four-strand steelmaking tundish using flow analysis of different configurations(The Southern African Institute of Mining and Metallurgy, 2015) Cloete, J. H.; Akdogan, G.; Bradshaw, S. M.; Chibwe, D. K.ENGLISH ABSTRACT: Modern tundishes have evolved as vessels to serve as the final step in refining of molten steel by removing inclusions and promoting thermochemical homogeneity. In this study the flow behaviour in a four-strand tundish was investigated by means of a ½-scale water model as well as numerical modelling. The numerical and physical models were used to characterize residence time distribution and calculate properties pertaining to tundish flow regime. Three different tundish configurations were investigated: a bare tundish with no flow control devices, a tundish with a turbulence inhibitor, and a tundish with both a turbulence inhibitor and a dam. The physical and numerical models showed that a tundish without flow control devices is prone to significant short-circuiting. A tundish with a turbulence inhibitor was shown to be successful in preventing shortcircuiting and provided surface-directed flow that might assist the removal of inclusions from the melt. However, it was also observed that the upward-directed flow caused the maximum turbulence kinetic energy near the surface to increase dramatically. The potential for slag entrainment should therefore be considered during the design and operation of tundishes with turbulence inhibitors.
- ItemPrediction of gas holdup in a column flotation cell using computational fluid dynamics (CFD)(The Southern African Institute of Mining and Metallurgy, 2019-01) Mwandawande, I.; Akdogan, G.; Bradshaw, S. M.; Karimi, M.; Snyders, N.ENGLISH ABSTRACT: Computational fluid dynamics (CFD) was applied to predict the average gas holdup and the axial gas holdup variation in a 13.5 m high cylindrical column 0.91 m diameter. The column was operating in batch mode. A Eulerian-Eulerian multiphase approach with appropriate interphase momentum exchange terms was applied to simulate the gas-liquid flow inside the column. Turbulence in the continuous phase was modelled using the k- realizable turbulence model. The predicted average gas holdup values were in good agreement with experimental data. The axial gas holdup prediction was generally good for the middle and top parts of the column, but was over-predicted for the bottom part of the column. Bubble velocity profiles were observed in which the axial velocity of the air bubbles decreased with height in the column. This may be related to the upward increase in gas holdup in the column. Simulations were also conducted to compare the gas holdup predicted with the universal, the Schiller-Naumann, and the Morsi-Alexander drag models. The gas holdup predictions for the three drag models were not significantly different.
- ItemThe recovery of copper from a pregnant sulphuric acid bioleach solution with developmental resin Dow XUS43605(Southern African Institute of Mining and Metallurgy, 2013-04) Liebenberg, C. J.; Dorfling, C.; Bradshaw, S. M.; Akdogan, G. A.; Eksteen, J. J.ENGLISH ABSTRACT: This paper focuses on the application of ion exchange technology for the recovery of copper from a leach solution originating from a heap bioleach in which base metals are leached from a low-grade ore that bears platinum group metals. Screening tests indicated that Dow XUS43605 has high selectivity for copper over the other metals in the solution, namely nickel, iron, cobalt, zinc, manganese, and aluminium. Batch adsorption kinetic experiments showed that copper adsorption equilibrium is attained at a fast rate. The kinetics of adsorption increased as the temperature was increased from 25°C to 60°C due to the decrease in solution viscosity and the subsequent improved intra-particle mass diffusion. Single-component Langmuir and Freundlich isotherm models were fitted to the batch copper adsorption equilibrium data, and a maximum copper capacity of 26 g/l was observed for Dow XUS43605. The effects of flow rate, temperature, pH, and initial metal concentration on the dynamic recovery of copper were investigated in fixed-bed columns, and it was determined that temperature and flow rate had the most significant impacts on the loading of copper on the resin at copper breakthrough. A 36% increase in copper loading at breakthrough was observed when the temperature was increased from 25°C to 60°C. Finally, it was determined that a split elution is possible by using different concentrations of H2SO4 to first elute co-loaded nickel from the resin, followed by the elution of copper.