Towards orientation invariant sensorimotor object recognition based on hierarchical temporal memory with cortical grid cells.
dc.contributor.advisor | Van den Heever, D. | en_ZA |
dc.contributor.author | Roux, K. | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. | en_ZA |
dc.date.accessioned | 2021-06-23T15:10:26Z | |
dc.date.accessioned | 2021-12-22T14:12:05Z | |
dc.date.available | 2021-06-23T15:10:26Z | |
dc.date.available | 2021-12-22T14:12:05Z | |
dc.date.issued | 2021-12 | |
dc.description | Thesis (MEng)--Stellenbosch University, 2021. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Hierarchical Temporal Memory (HTM) is a framework that implements bio- logically plausible artificial intelligence by capturing key computational and architectural principles of the neocortex. This study proposes an extension to the HTM framework to support sensor orientations relative to learned allocentric object representations. The proposed mechanism enables object representations to be learned through sensorimotor sequences, and inference of these learned object representations from novel sensorimotor sequences produced by rotated objects through path integration. The model proposes that orientational selective cells are present in each column in the neocortex, and provides a biologically plausible implementation that echoes experimental measurements and fits in with theoretical predictions of previous studies. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Hiërargiese Tydelike Geheue (HTG) is n raamwerk wat biologies aanneem- like kunsmatige intelligensie implementeer deur fundamentele berekenings- en argitektoniese beginsels van die neokorteks vas te lê. Hierdie studie bied ’n uitbreiding van die HTG raamwerk om sensor oriëntasies ten opsigte van aangeleerde allosentriese verteenwoordigings te ondersteun. Die voorgestelde meganisme maak dit moontlik om verteenwoordigings te leer deur middel van sensormotoriese volgordes, en afleiding van hierdie verteenwoordigings van geleerde objekte uit nuwe sensormotoriese volgordes wat geproduseer word deur geroteerde objekte deur middel van padintegrasie. Die model stel voor dat oriëntasie-selektiewe selle in elke kolom in die neokorteks voorkom, en bied ’n biologies aanneemlike implementering wat eksperimentele metings weerspieël en inpas by teoretiese voorspellings van vorige studies. | af_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | 115 pages | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/123610 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Sensorimotor -- Learning | en_ZA |
dc.subject | Hierarchical Temporal Memory | en_ZA |
dc.subject | Orientation invariance | en_ZA |
dc.subject | Grid cells | en_ZA |
dc.subject | UCTD | en_ZA |
dc.subject | Neocortex | en_ZA |
dc.subject | Artificial intelligence -- Physiology | en_ZA |
dc.title | Towards orientation invariant sensorimotor object recognition based on hierarchical temporal memory with cortical grid cells. | en_ZA |
dc.type | Thesis | en_ZA |