Control of CO2 vibrational dynamics via shaped-pulse coherent anti-Stokes Raman spectroscopy

dc.contributor.advisorHermann, Uysen_ZA
dc.contributor.authorAttie, Hendriksen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Physicsen_ZA
dc.date.accessioned2017-02-06T11:23:40Z
dc.date.accessioned2017-03-29T11:36:35Z
dc.date.available2017-02-06T11:23:40Z
dc.date.available2017-03-29T11:36:35Z
dc.date.issued2017-03
dc.descriptionThesis (PhD)--Stellenbosch University, 2017en_ZA
dc.description.abstractENGLISH ABSTRACT : In this work we investigate the coherent control of carbon dioxide (CO2) vibrational dynamics using Coherent anti-Stokes Raman Scattering (CARS). During CARS, vibrational modes are excited via stimulated Raman scattering (SRS). Subsequently a narrowband probe field interacts with the molecular ensemble providing not only information about the modes populated, but also on the evolution of the wave-packet created during excitation. By spectrally shaping one of the SRS pump fields the vibrational dynamics can be controlled. In this work it was assumed that the pump pulse structure which will lead to a desired dynamics is unknown. To find that structure, a learning algorithm was developed which utilizes a spatial light modulator (SLM) in a 4f-optical con guration to spectrally shape the pump. Both a time-frequency representation of the shaped pulse (called the von Neumann basis) and a standard Fourier domain representation were bench-marked during optimization of a second harmonic generation (SHG) signal in a BBO crystal to ascertain which will suit the optimization problem best in terms of convergence rate and parameter space size. It was found that the von Neumann basis converged faster than the standard Fourier domain representation while still operating on a larger parameter space and therefore it was used in all subsequent work. In addition, we developed a quantum mechanical theoretical model of the CARS process to ensure proper understanding of our measurements. We demonstrated experimentally that mode excitation selectivity can be achieved using the pump fields extracted by the learning algorithm, and we explore the underlying selectivity mechanisms. Control of the relative phase of oscillation of different vibrational modes is also observed. Our work demonstrates coherent quantum control of all relevant aspects of the molecular vibrational dynamics of CO2.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : In hierdie werk ondersoek ons die koherente beheer van koolstofdioksied (CO2) vibrasionele dinamika met behulp van koherente anti-Stokes Raman verstrooiing(KARV). Gedurende KARV word vibrasionele modusse opgewek deur middel van gestimuleerde Raman verstrooiing (GRV). Vervolgens meet n nou-bandwydte meet puls die molekulêre toestand asook die tydsontwikkeling van die golf-pakkie wat geskep is tydens opwekking. Deur een van die GRV velde spektraal te vervorm kan die vibrasionele dinamika beheer word. In hierdie werk is aanvaar dat die pomp puls struktuur wat sal lei tot 'n gewenste dinamika onbekend is. Om daardie struktuur te vind, word n leer algoritme ontwikkel wat n ruimtelike lig modulator (RLM) in 'n 4f-optiese opstelling gebruik om die pomp te vervorm. Beide 'n tyd-frekwensie voorstelling van die gevormde veld (bekend as die von Neumann basis) en 'n standaard Fourier voorstelling was getoets gedurende optimering van 'n tweede harmoniese opwekking (THO) in 'n BBO kristal om vas te stel wat die optimering probleem die beste sal pas in terme van konvergensie koers en parameter ruimte grootte. Daar is bevind dat die von Neumann basis vinniger konvergeer as die standaard Fourier verteenwoordiging terwyl dit op 'n groter parameter ruimte werk en is dus gebruik in alle werk wat daarop volg. Daarbenewens het ons 'n kwantummeganiese teoretiese model van die proses ontwikkel om behoorlike begrip van ons metings te verseker. Ons demonstreer eksperimenteel dat modus opwekking selektief gedoen kan word met behulp van die pomp velde verkry vanaf die leer algoritme, en ons ondersoek die onderliggende selektiwiteit meganismes. Beheer van die relatiewe fase van ossillasie van verskillende vibrasionele modusse is ook waargeneem. Ons werk toon kwantum beheer van alle relevante aspekte van die molekulêre vibrasionele dinamika van CO2.af_ZA
dc.format.extentxv, 128 pages : illustrations (mainly colour)en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/100836
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectCoherent controlen_ZA
dc.subjectCoherent anti-Stokes Raman spectroscopyen_ZA
dc.subjectVibrational excitationen_ZA
dc.subjectPulse shapingen_ZA
dc.subjectMolecular vibrationen_ZA
dc.subjectUCTDen_ZA
dc.titleControl of CO2 vibrational dynamics via shaped-pulse coherent anti-Stokes Raman spectroscopyen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hendriks_control_2017.pdf
Size:
8.15 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: