Minimum density hyperplanes

dc.contributor.authorPavlidis, Nicos G.en_ZA
dc.contributor.authorHofmeyr, David P.en_ZA
dc.contributor.authorTasoulis, Sotiris K.en_ZA
dc.date.accessioned2019-01-29T07:16:11Z
dc.date.available2019-01-29T07:16:11Z
dc.date.issued2016
dc.descriptionCITATION: Pavlidis, N. G., Hofmeyr, D. P. & Tasoulis, S. K. 2016. Minimum density hyperplanes. Journal of Machine Learning Research, 17(156):1-33.
dc.descriptionThe original publication is available at http://jmlr.org
dc.description.abstractAssociating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is central to many statistical and machine learning approaches to the classification of unlabelled data. We propose a novel hyperplane classifier for clustering and semi-supervised classification which is motivated by this objective. The proposed minimum density hyperplane minimises the integral of the empirical probability density function along it, thereby avoiding intersection with high density clusters. We show that the minimum density and the maximum margin hyperplanes are asymptotically equivalent, thus linking this approach to maximum margin clustering and semi-supervised support vector classifiers. We propose a projection pursuit formulation of the associated optimisation problem which allows us to find minimum density hyperplanes efficiently in practice, and evaluate its performance on a range of benchmark data sets. The proposed approach is found to be very competitive with state of the art methods for clustering and semi-supervised classification.en_ZA
dc.description.urihttp://jmlr.org/papers/v17/15-307.html
dc.description.versionPublisher's version
dc.format.extent33 pages
dc.identifier.citationPavlidis, N. G., Hofmeyr, D. P. & Tasoulis, S. K. 2016. Minimum density hyperplanes. Journal of Machine Learning Research, 17(156):1-33
dc.identifier.issn1533-7928 (online)
dc.identifier.issn1532-4435 (print)
dc.identifier.urihttp://hdl.handle.net/10019.1/105369
dc.language.isoen_ZAen_ZA
dc.publisherJournal of Machine Learning Research
dc.rights.holderAuthors retain copyright
dc.subjectClusters (Mathematics)en_ZA
dc.subjectHyperplanes (Mathematics)en_ZA
dc.subjectApplied mathematicsen_ZA
dc.titleMinimum density hyperplanesen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pavlidis_minimum_2016.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: