A moment method solution of electromagnetic radiation from composite bodies of revolution

Date
1994
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Many structures in engineering today use composite materials, combining structural strength with light weight. Electromagnetically, the materials vary from dielectrics, penetrable by electromagnetic fields, to highly conductive types. Additionally the materials can be inhomogeneous, i.e. the electrical properties of the material are a function of location. The requirement is foreseen to be able to predict electromagnetic scattering by such structures, as well as radiation from antennas mounted on them. Analytical solutions of such problems are in many cases impossible and they must be modelled numerically. Examples of such problems are medical applications of electromagnetics and antennas mounted on future vehicles. The main contribution of this dissertation is the demonstration of the suitability of a surface integral equation formulation, solved by a moment method solution, in solving problems involving electromagnetic radiation from composite bodies of revolution. A body of revolution is a body having rotational symmetry and a composite body is defined here as one made up of different homogeneous isotropic material regions, penetrable by electromagnetic waves, and perfectly electrically conducting regions surrounded by free space. The material regions can be lossy. The formulation described here has previously been successfully applied to compute scattering from composite bodies of revolution. In this dissertation the formulation is extended to radiation problems involving apertures mounted in conducting surfaces of the body of revolution. A number of problems can be modelled as bodies of revolution including a number of practical antenna problems. The rotational symmetry of these problems is exploited to reduce the computational requirements of a three dimensional problem to that of a number of two dimensional problems. The dissertation begins with a review of literature on the moment method and bodies of revolution which serves to place the work in context. An overview of the mathematical formulation of the problem, which is based on an application of the equivalence principle, is then presented. The formulation leads to a set of surface integral equations having surface currents as the unknowns to be solved for. A number of integral equation sets are possible depending on choices made in the formulation process. These choices are discussed. The particular integral equation formulation applied in this dissertation is cast into a form readily solvable by the moment method. The numerical solution of the integral equations by way of the moment method is derived giving careful attention to formalizing a notation that simplifies the formidable "book-keeping" problems associated with composite bodies of revolution consisting of many regions. Numerical results are presented for a canonical problem which are compared to analytical solutions. A number of practical antenna configurations are successfully analysed using the formulation. Input impedance and far field results, which are compared with measurements, are presented. Part of the formulation, the integral equations for conducting regions, does not guarantee unique solutions at all frequencies. This problem, commonly known in the literature as the "interior resonance" problem, is evident in the computed results and occurs in the vicinity of discrete frequencies associated with the problem's geometry. A method proposed in the literature for avoiding the problem is evaluated. The method involves detecting the problem frequencies and correcting the computed current at these frequencies. The method can be implemented without having to modify the integral formulation.
AFRIKAANSE OPSOMMING: Deesdae in ingenieurswese bestaan baie strukture uit saamgestelde materiale wat strukturele sterkte met 'n ligte gewig kombineer. Elektromagneties gesproke wissel die materiale vanaf diëlektrikum, deurdringbaar deur elektromagnetiese velde, tot hoogs geleidende soorte. Verder kan die materiale nie-homogeen wees, d.w.s. die elektriese eienskappe van die materiaal is 'n funksie van posisie. Die verwagte vereiste is om elektromagnetiese strooiing deur sulke strukture, sowel as straling vanaf antennas op hulle gemonteer, te voorsien. Analitiese oplossings van sulke probleme is in baie gevalle onmoontlik en hulle moet numeries gemodelleer word. Voorbeelde van sulke probleme is mediese toepassings van elektromagnetisme en antennas gemonteer op toekomstige voertuie. Die hoof hydra van hierdie proefskrif is die demonstrasie van die geskiktheid van 'n oppervlak integraal vergelyking formulering, opgelos deur middel van 'n momentmetode oplossing, vir die oplossing van probleme wat elektromagnetiese straling vanaf saamgestelde liggame van omwenteling behels. 'n Ligaam van omwenteling is 'n ligaam wat omwentelingssimmetrie het, en 'n saamgestelde ligaam is hier gedefineer as bestaande uit verskillende homogene isotropiese materiaal gebiede, deurdringbaar deur elektromagnetiese golwe, en perfekte elektriese geleidende gebiede deur vrye ruimte omring. Die materiaal gebiede kan verlieserig wees. Die formulering wat hier beskryf word is voorheen met sukses in die berekening van strooiing van saamgestelde liggame van omwenteling toegepas. In hierdie proefskrif word die formulering uitgebrei tot stralings probleme wat gleuwe gemonteer in geleidende oppervlaktes van die ligaam van omwenteling behels. Heelwat probleme, insluitende 'n aantal praktiese antenna probleme, kan as liggame van omwentiling gemodelleer word. Die omwentelingssimmetrie van hierdie probleme is ontgin om die berekeningsvereistes van 'n drie dimensionele probleem na die van 'n aantal twee dimensionele probleme te verminder. Die proefskrif begin met 'n hersiening van literatuur oor die momentmetode en liggame van omwentiling wat dien om die werk in verband te plaas. 'n Oorsig van die wiskundige formuleering van die probleem, wat op 'n toepasing van die ekwivalensie beginsel gegrond is, word daarna aangebied. Die formuleering lei tot 'n stel oppervlak integraal vergelykings met oppervlak strome as die onbekende, waarvoor opgelos moet word. 'n Aantal integraal vergelyking stelle is moontlik afhangende van keuses wat in die formuleering proses gemaak word. Hierdie keuses word bespreek. Die besondere integral vergelyking formuleering wat in hierdie proefskrif toegepas is, is in 'n vorm gebring wat geredelik deur die momentmetode oplosbaar is. Die numeriese oplossing van die integral vergelykings deur middel van die momentmetode is afgelei en in die proses is sorgvulgige aandag aan die vorming van 'n skryfwyse wat die ontsaglike "boekhou" probleme, wat met saamgestelde liggame van omwenteling bestaande uit baie gebiede gepaard gaan, gegee. Numeriese resultate, wat saam met 'n analitiese oplossing vergelyk is, is vir 'n kanoniese probleem aangebied. Die formulering is gebruik om 'n aantal praktiese antenna konfigurasies met welslae te ontleed. Toevoer impedansie en ver veld resultate, wat saam met meetings vergelyk is, is aangebied. 'n Deel van die formulering, die integraal vergelyking vir geleidende gebiede, kan nie unieke oplossings by alle frekwensies waarborg nie. Hierdie probleem, algemeen in die literatuur as die "interieur resonansie" probleem bekend, is in die berekende resultate duidelik en kom voor in die omgewing van diskrete frekwensies wat met die geometrie van die probleem gepaard gaan. 'n Metode wat in die literatuur voorgestel word om die probleem te vermy, is beoordeel. Die metode behels die vasstelling van die problem frekwensies en die verbetering van die berekende stroom by hierdie frekwensies. Die metode kan sonder wysiging van die integraal formulering toegepas word.
Description
Dissertation (Ph.D.) -- University of Stellenbosch, 1994.
Keywords
Citation