Modelling the impact of Magnetohydrodynamics (MHD) nanofluid flow on cooling of engineering systems

dc.contributor.advisorMakinde, Oluwole Danielen_ZA
dc.contributor.authorTshivhi, Khodani Sherrifen_ZA
dc.contributor.otherStellenbosch University. Faculty of Military Sciences. School of Science and Technology.en_ZA
dc.date.accessioned2021-11-21T14:21:11Z
dc.date.accessioned2021-12-22T14:23:03Z
dc.date.available2021-11-21T14:21:11Z
dc.date.available2021-12-22T14:23:03Z
dc.date.issued2021-12
dc.descriptionThesis (MMil)--Stellenbosch University, 2021.en_ZA
dc.description.abstractENGLISH ABSTRACT: The flow investigations regarding nonlinear materials are extremely important in the applied science and engineering areas to explore the properties of flow and heat transfer. Recent advancement in nanotechnology has provided a veritable platform for the emergence of a better ultrahigh-performance coolant known as nanofluid for many engineering and industrial technologies. In this study, we examine the influence of a magnetic field on the heat transfer enhancement of nanofluid coolants consisting of Cu-water, or Al2O3-water, or Fe3O4-water over slippery but convectively heated shrinking and stretching surfaces. The model is based on the theoretical concept of magnetohydrodynamics governing the equation of continuity, momentum, energy, and electromagnetism. Based on some realistic assumptions, the nonlinear model differential equations are obtained and numerically tackled using the shooting procedure with the Runge-Kutta-Fehlberg integration scheme. The existent of dual solutions in the specific range of shrinking surface parameters are found. Temporal stability analysis to small disturbances is performed on these dual solutions. It is detected that the upper branch solution is stable, substantially realistic with the smallest positive eigenvalues while the lower branch solution is unstable with the smallest negative eigenvalues. The influence of numerous emerging parameters on the momentum and thermal boundary layer profiles, skin friction, and Nusselt number are depicted graphically and quantitatively discussed.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Geen Afrikaanse opsomming beskikbaar nie.af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxii, 74 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/123816
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectHeat transferen_ZA
dc.subjectHeat -- Transmissionen_ZA
dc.subjectNanofluidsen_ZA
dc.subjectBoundary layer (Meteorology)en_ZA
dc.subjectMagnetohydrodynamics (MHD)en_ZA
dc.subjectNusselt numberen_ZA
dc.subjectRunge-Kutta formulasen_ZA
dc.subjectDifferential equations, Partialen_ZA
dc.subjectControl theoryen_ZA
dc.subjectUCTD
dc.titleModelling the impact of Magnetohydrodynamics (MHD) nanofluid flow on cooling of engineering systemsen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tshivhi_impact_2021.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: