Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations
dc.contributor.author | Niu, Z. M. | en_ZA |
dc.contributor.author | Niu, Y. F. | en_ZA |
dc.contributor.author | Liang, H. Z. | en_ZA |
dc.contributor.author | Long, W. H. | en_ZA |
dc.contributor.author | Meng, Jie | en_ZA |
dc.date.accessioned | 2018-11-07T09:04:05Z | |
dc.date.available | 2018-11-07T09:04:05Z | |
dc.date.issued | 2017 | |
dc.description | CITATION: Niu, Z. M., et al. 2017. Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations. Physical Review C, 95(4):1-11, doi:10.1103/PhysRevC.95.044301. | en_ZA |
dc.description | The original publication is available at https://journals.aps.org/prc | en_ZA |
dc.description.abstract | The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree–Fock–Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IASs) and Gamow–Teller resonances (GTRs) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the Gamow–Teller transition. | en_ZA |
dc.description.uri | https://journals.aps.org/prc/abstract/10.1103/PhysRevC.95.044301 | |
dc.description.version | Publisher's version | en_ZA |
dc.format.extent | 11 pages : colour illustrations | en_ZA |
dc.identifier.citation | Niu, Z. M., et al. 2017. Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations. Physical Review C, 95(4):1-11, doi:10.1103/PhysRevC.95.044301 | en_ZA |
dc.identifier.issn | 2469-9993 (online) | |
dc.identifier.issn | 2469-9985 (print) | |
dc.identifier.other | doi:10.1103/PhysRevC.95.044301 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/104654 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | American Physical Society | en_ZA |
dc.rights.holder | American Physical Society | en_ZA |
dc.subject | Nuclear reactions | en_ZA |
dc.subject | Relativistic Hartree–Fock–Bogoliubov (RHFB) theory | en_ZA |
dc.subject | Gamow–Teller resonances (GTRs) | en_ZA |
dc.subject | Nuclear physics | en_ZA |
dc.subject | Nuclei | en_ZA |
dc.subject | Isobar analogue states | en_ZA |
dc.subject | Dirac Hartree–Fock equation | en_ZA |
dc.subject | Quasiparticle random-phase approximation (QRPA) | en_ZA |
dc.title | Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations | en_ZA |
dc.type | Article | en_ZA |