Strategies for the control of malolactic fermentation : characterisation of Pediocin PD-1 and the gene for the malolactic enzyme from Pediococcus damnosus NCFB 1832

dc.contributor.advisorDicks, Leon Milner Theodoreen_ZA
dc.contributor.authorBauer, Roleneen_ZA
dc.contributor.otherStellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.en_ZA
dc.date.accessioned2012-08-27T11:33:15Z
dc.date.available2012-08-27T11:33:15Z
dc.date.issued2004-12
dc.descriptionDissertation (PhD Agric)--University of Stellenbosch, 2004.en_ZA
dc.description.abstractENGLISH ABSTRACT: Malolactic fermentation (MLF) is conducted by lactic acid bacteria (LAB) and entails the decarboxylation of L-malate to L-Iactate through a reaction catalysed by the malolactic enzyme (MLE). The consequence of this conversion is a decrease in total acidity. MLF plays a part in microbial stabilisation and due to the metabolic activity of the bacteria the organoleptic profile of the wine is modified. In some wines MLF is considered as spoilage, especially in warm viticultural regions with grapes containing less malic acid. In addition to undesirable organoleptic changes, MLF can alter wine colour, and biogenic amines may be produced. To induce MLF we provided s. cerevisiae with the enzymatic activities required for MLF, which is then conducted by the yeast during alcoholic fermentation. The malolactic enzyme-encoding gene (mieD) was cloned from Pediococcus damnosus NCFB 1832, characterised and expressed in S. cerevisiae. The activity of this enzyme was compared to two other malolactic genes, mieS from Lactococcus lactis MG1363 and mleA from Oenococcus oeni La11, expressed in the same yeast strain. All three recombinant strains of S. cerevisiae converted L-malate to L-Iactate in synthetic grape must, reaching L-malate concentrations of below 0.3 gIL within 3 days. However, a lower conversion rate and a significant lower final L-Iactate level were observed with the yeast expressing mieD. In order to inhibit MLF, we show that the growth of O. oeni, the main organism responsible for MLF, could be safely repressed with a ribosomaly synthesised antimicrobial peptide, pediocin PD-1, produced by P. damnosus NCFB 1832, without effecting yeast growth. Pediocin PD-1 is stable in wine at 4°C-100°C, and ethanol or S02 does not affect its activity. The peptide was purified to homogeneity and sequence analysis suggests that the peptide is a member of the lantibiotic family of bacteriocins. The molecular mass was estimated by mass spectroscopy to be 2866.7 ± 0.4 Da. Pediocin PD-1 forms pores in sensitive cells, as indicated by the efflux of K+ from O. oeni, combined with inhibition of cell wall biosynthesis, leading to cell lysis. Loss of cell K+was reduced at low temperatures, presumably as a result of the increased ordering of the lipid hydrocarbon chains in the cytoplasmic membrane. Although pediocin PD-1 is active over a broad pH range, optimal activity was recorded at pH 5.0. The petide is, however, more stable between pH 2.0 and 5.0, with the best stability observed between pH 3.0 and 4.0. Pediocin PD-1 provides a safer biological alternative than chemical preservatives such as S02.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Appelmelksuurgisting (AMG) word deur sekere melksuurbakterieë (MSB) uitgevoer en verwys na die dekarboksilering van L-malaat na L-Iaktaat, 'n reaksie gekataliseer deur die appelmelksuurensiem (AME). AMG verlaag die suurvlakke in wyn, speel 'n rol in mikrobiologiese stabiliteit, en verander die organoleptiese profiel van die wyn. In sommige wyne word AMG beskou as bederf, veral in warm wynbou streke met minder malaat in druiwe. AMG kan ongewenste organoleptiese veranderinge teweeg bring, die wyn se kleur beinvloed, en tot die produksie van biogene amiene lei. Vir die bevordering van AMG het ons S. eerevisiae met die ensiematiese aktiwiteit benodig vir AMG voorsien wat dan veilig deur die gis tydens alkoholiese fermentasie uitgevoer word. 'n AME-koderende geen (mIeD) is uit Pedioeoeeus damnosus NCFB 1832 gekloneer, gekarakteriseer en in S. Cerevisiae uitgedruk. Die aktiwiteit van die ensiem is vervolgens vergelyk met die aktiwitet van twee ander AME gene, mIeS van Laetoeoeeus laetis MG1363 en mleA van Oenoeoeeus oeni Lal1, uitgedruk in dieselfde gisras. AI drie rekombinante gisrasse het L-malaat binne die bestek van drie dae na L-Iaktaat omgeskakel en die finale L-malaat vlakke was minder as 0.3 gIL. Die tempo van omkakeling was egter laer in die gis wat die mIeD geen uitdruk en die finale L-Iaktaat vlakke was veel laer. Om AMG te inhibeer is die groei van O. oeni, die organisme hoofsaaklik verantwoordelik vir AMG, onderdruk deur die byvoeging van 'n ribosomaal gesintetiseerde antimikrobiese peptied, pediocin PD-1, geproduseer deur P. damnosus NCFB 1832. Gisgroei is nie geaffekteer nie. Pediocin PD-1 is stabiel in wyn by temperature wat wissel tussen 4°C en 100°C, en die aktiwiteit van die peptied word nie geaffekteer deur ethanol of S02 nie. Die peptied is gesuiwer volgens In eenvoudige metode wat amoniumsulfaat-presipitasie en katioon uitruilings-ehromatografie insluit. Aminosuur volgorde bepaling van gesuiwerde peptied dui daarop dat pediocin PD-1 tot die lantibiotiese familie van bakteriosiene behoort. Die molekulêre massa van die peptied, soos bepaal deur massa spektroskopie, is 2866.7 ± 0.4 Da. Pediocin PD-1 vorm porieë in selmembrane van sensitiewe selle soos aangedui deur die uitvloei van K+vanuit O. oeni selle. Die peptied kombineer hierdie aksie met die inhibisie van selwand biosintese wat lei tot sel lise. Verlies van sellulêre K+verminder by laer temperature, waarskynlik as gevolg van verandering in die lipied- en protein inhoud van die sitoplasmiese membraan. Alhoewel die peptied aktief is oor 'n breë pH grens, is die antimikrobiese aksie optimaal by pH 5.0. Die peptied is meer stabiel tussen pH 2.0 en 5.0 en toon die beste stabiliteit tussen pH 3.0 en 4.0. Peiocin PD-1 is 'n veilige biologiese alternatief vir chemiese preserveermiddels soos S02.af_ZA
dc.format.extent137 p.
dc.identifier.urihttp://hdl.handle.net/10019.1/50106
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectWine and wine making -- Microbiologyen_ZA
dc.subjectFermentationen_ZA
dc.subjectLactic acid bacteriaen_ZA
dc.subjectDissertations -- Wine biotechnologyen_ZA
dc.subjectTheses -- Wine biotechnologyen_ZA
dc.titleStrategies for the control of malolactic fermentation : characterisation of Pediocin PD-1 and the gene for the malolactic enzyme from Pediococcus damnosus NCFB 1832en_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bauer_strategies_2004.pdf
Size:
42.72 MB
Format:
Adobe Portable Document Format
Description: