Rheo-mechanics, durability and microstructural characterisation of slag-nodified metakaolin-based geopolymer concrete for extrusion-based 3D printing applications

Date
2023-11
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Extrusion-based 3D-printed geopolymer concrete (3DPGPC) is a potential alternative to Portland cement concrete (PCC). Research is sparse on the use of metakaolin (MK) for extrusion-based 3D concrete printing applications. The widespread adoption of 3DPGPC is limited due to the unknown durability properties and the long setting time of a two-part geopolymer system. To address the long setting time, this study modified MK-based 3DPGPC with slag up to 30% for 3D printing due to its high Ca2+ ion content. The printable mixture developed comprises M1 (100% MK-3DPGPC) and M2 (95% MK and 5% slag), beyond 5% slag inclusion; the mixtures stiffened with inadequate open time for printing. To address the stiffening, sodium phosphate is incorporated to achieve sufficient open time for constructability of the new mixtures and to improve structural build-up in the mixtures containing slag, M-S10 (90% MK and 10% slag), M-S20 (80% MK and 20% slag) and M-S30 (70% MK and 30% slag), while the mixture without slag, M-S0 (100% MK), is the control. The slump obtained using a mini-slump cone is in the range of 3–5.5 mm and the slump flow using a slump flow table is between 148–157 mm. The setting time using the Vicat apparatus depicts an open time of 6.8 hours for the control (M-S0), and 1.2–1.3 hours for slag-modified mixtures. Rheology tests using an ICAR rheometer reveal that the initial static yield shear stress (𝜏𝑠,𝑖 ) increased from 1898–1900 Pa and initial dynamic yield shear stress (𝜏𝐷,𝑖 ) evolve from 1452–1482 Pa due to 5% slag inclusion. Also, re-floccution (Rthix) and structuration (Athix) rates improved from 5.16 and 0.2 Pa/s to 5.2 and 0.4 Pa/s, respectively. After 28 days of curing age, 70 mm × 140 mm cored cylindrical-3DPGPC specimens exhibited compressive strength of 23.7–33.13 MPa and splitting tensile strength of 1.79–2.43 MPa. Saw-cut 40 mm × 40 mm × 160 mm beam specimens attained flexural strength of 5.48– 7.29 MPa and an interlayer bond strength of 5.40–6.90 MPa. The durability of 3DPGPC is investigated using the water absorption test, capillary and gel porosity test, oxygen permeability index (OPI), and drying shrinkage tests. After 90 days of curing, the drying shrinkages in the vertical direction are 2.98 and 2.86% for the control specimen (M1) and the slag-modified specimen (M2), respectively. In the horizontal direction, the drying shrinkages are 1.14 and 1.1%, respectively. The vertical strain obtained during drying includes plastic shrinkage, drying shrinkage, and vertical creep due to the sustained weight of the upper layers in the fresh state. Drying shrinkage varied along and across the layers of 3DPGPC, depicting anisotropic behaviour. After 90 days of curing, water absorption decreases to 7.33% and 5.2% in M1 and M2 specimens, respectively. The total porosity of 3DPGPC decreases from 20.5–14.5% after 90 days of curing, while mould cast decreasesfrom 15 to 10% in M1 specimens. Slag inclusion further reduce the porosity of 3DPGPC, and mould cast from 17–10.9% and 11.5–8%, respectively. After 90 days of curing, 3DPGPC specimens cored perpendicular to the printing direction (vertical) exhibits (OPI) of 11.07–11.86 kPa, and specimens cored perpendicular to the printing direction (horizontal) exhibits OPI in the range of 10.99–11.74 kPa, while mould cast specimens exhibit OPI of 11.23–11.92 kPa. CT-scan shows that mould-cast specimens have a total porosity of 4.07% and exhibit spherical pores, while 3DPGPC have a total porosity of 1.81% and exhibit elongated pores due to pumping. CT-scan also reveals that porosity is position-dependent in 3DPGPC due to the presence of voids between 0.1–1.7 mm at the interlayer, whereas mould-cast specimens exhibit randomly distributed voids in the range of 0.1–2.5 mm in diameter. Backscattered electron images show increasing C-S-H, N-A-S-H and C-A-S-H gel formation due to the presence of alumina, silica, sodium in MK and high Ca2+ ion as slag content increases. The BrunauerEmmett-Teller (BET) surface area increases with an increase in slag content from 5–23 m2 /g, resulting in the densified 3DPGPC matrix, thereby improving buildability from 27 layers to 42 layers and enhancing mechanical performance. Nitrogen physisorption test shows that the adsorption and desorption isotherms and the hysteresis loops are within the IUPAC Class IV and H3 types, indicating the presence of mesopores (2–50 nm) and macropores (>50 nm). This research demonstrates that MK-based 3DPGPC can be successfully 3D printed and modified with slag to improve the fresh properties, rheology, mechanical properties, microstructural morphology, pore characteristics, and long-term durability performance. It also reveals that 3DPGPC exhibits anisotropy in orthogonal directions. The results obtained from this study are recommended for numerical modelling strategies.
AFRIKAANS OPSOMMING: Ekstrusie-gebaseerde 3D-gedrukte geopolimeerbeton (3DPGPC) is 'n potensiële alternatief vir Portland sementbeton (PCC). Navorsing is yl oor die gebruik van metakaolien (MK) vir ekstrusie-gebaseerde 3D-betondruktoepassings. Die wydverspreide aanvaarding van 3DPGPC is beperk as gevolg van die onbekende duursaamheidseienskappe en die lang settyd van 'n tweedelige geopolimeerstelsel. Om die lang settyd aan te spreek, het hierdie studie MKgebaseerde 3DPGPC met slagment tot 30% vir 3D-drukwerk gewysig as gevolg van die hoë Ca+ioon-inhoud daarvan. Die drukbare mengsel wat ontwikkel is, bestaan uit M1 (100% MK3DPGPC) en M2 (95% MK en 5% slagment). Met meer as 5% slagmentinsluiting het die mengsels verstyf met onvoldoende ooptyd vir druk. Om die verstywing aan te spreek, word natriumfosfaat ingewerk om voldoende ooptyd vir die boubaarheid van die nuwe mengsels te bereik en om strukturele opbou in die mengsels wat slagment bevat, M-S10 (90% MK en 10% slak), M-S20 ( 80% MK en 20% slak) en MS30 (70% MK en 30% slak), terwyl die mengsel sonder slagment, M-S0 (100% MK), die beheermengsel is. Die versakking wat met 'n mini-slump kegel verkry word, is in die reeks van 3–5.5 mm en die kegelvloeivloei verkry met behulp van 'n vloeitafel is 148–157 mm. Die settyd wat met die Vicat-apparaat verkry word, toon ’n ooptyd van 6.8 uur vir die kontrole (M-S0), en 1.2–1.3 uur vir slagment-gemodifiseerde mengsels. Reologietoetse met 'n ICAR-reometer toon dat die aanvanklike statiese vloeiskuifspanning (𝜏𝑠,𝑖) toeneem van 1898–1900 Pa en dat die aanvanklike dinamiese vloeiskuifspanning (𝜏𝐷,𝑖) van 1452–1482% toeneem as gevolg van die slagment insluiting. Die herflokkulasie (Rthix) en strukturasie (Athix) tempo verbeter vanaf 5.16 en 0.2 Pa/s tot onderskeidelik 5.2 en 0.4 Pa/s. Na 28 dae van kuring, het 70 mm × 140 mm kern silindriese-3DPGPC monsters druksterkte van 23.7–33.13 MPa en splyttreksterkte van 1.79– 2.43 MPa getoon. Gesaagde 40 mm × 40 mm × 160 mm balkmonsters het buigsterkte van 5.48–7.29 MPa en tussenlaagbindingssterkte van 5.40–6.90 MPa bereik. Die duursaamheid van 3DPGPC word ondersoek deur gebruik te maak van die waterabsorpsietoets, kapillêre en gelporositeitstoets, suurstofdeurlaatbaarheidsindeks (OPI), en droogkrimptoetse. Na 90 dae van uitharding is die droogkrimp in die vertikale rigting 2.98 en 2.86% vir die kontrole-monster (M1) en die slagmentgemodifiseerde monster (M2) onderskeidelik. In die horisontale rigting is die droogkrimp onderskeidelik 1.14 en 1.1%. Die vertikale vervorming wat tydens droging ontstaan, sluit plastiese krimp, droogkrimp en vertikale kruip in as gevolg van die volgehoue gewig van die boonste lae in die vars toestand. Droogkrimp het langs en oor die lae van 3DPGPC gevarieer, wat anisotropiese gedrag uitbeeld. Na 90 dae van kuring, neem waterabsorpsie af tot 7.33% en 5.2%, in onderskeidelik M1 en M2 monsters. Die totale porositeit van 3DPGPC neem af van 20.5–14.5% na 90 dae van kuring, terwyl die porositeit in M1 monsters wat in vorms gegiet is, van 15–10% afneem. Slagmentinsluiting verminder verder die porositeit van 3DPGPC, en dié van monsters in vorms gegiet van onderskeidelik 17–10.9% en 11.5–8%. Na 90 dae van verharding, toon 3DPGPC-monsters wat loodreg op die drukrigting (vertikaal) uitgeboor is, 11.07–11.86 kPa, en monsters wat loodreg op die drukrigting (horisontaal) uitgeboor is, vertoon OPI van 10.99–11.74 kPa, terwyl monsters wat in vorms gegiet is OPI van 11.23–11.92 kPa toon. CT-skandering toon dat vormgegote monsters 'n totale porositeit van 4.07% het en sferiese porieë vertoon, terwyl 3DPGPC 'n totale porositeit van 1.81% het en verlengde porieë vertoon as gevolg van pomp. CT-skandering onthul dat porositeit posisie-afhanklik is in 3DPGPC as gevolg van die teenwoordigheid van leemtes tussen 0.1 en 1.7 mm by die tussenlaag, terwyl vormgegote monsters ewekansig verspreide leemtes in die reeks van 0.1–2.5 mm in deursnee vertoon. Terugverstrooide elektronbeelde toon toenemende C-S-H, N-A-S-H en C-A-S-H jelvorming as gevolg van die teenwoordigheid van alumina, silika, natrium in MK en hoë Ca2+ ioon soos slagmentinhoud toeneem. Die BET-oppervlakte neem toe met 'n toename in slagmentinhoud van 5–23 m2 /g, wat lei tot die verdigte 3DPGPC-matriks, wat boubaarheid van 27 lae na 42 lae verbeter en meganiese werkverrigting verbeter. Stikstoffisisorpsietoetse toon dat die adsorpsieen desorpsie-isoterme en die histerese-lusse binne die IUPAC Klas IV en H3 tipes is, wat die teenwoordigheid van mesoporieë (2–50 nm) en makroporieë (>50 nm) aandui. Hierdie navorsing demonstreer dat MK-gebaseerde 3DPGPC suksesvol 3D gedruk en met slagment gemodifiseer kan word om die vars eienskappe, reologie, meganiese eienskappe, mikrostrukturele morfologie, porie eienskappe en langtermyn duursaamheid te verbeter. Dit onthul ook dat 3DPGPC anisotropie in ortogonale rigtings vertoon. Die resultate verkry uit hierdie studie word aanbeveel vir numeriese modelleringstrategieë.
Description
Thesis (PhD)--Stellenbosch University, 2023.
Keywords
Citation