The Impact of peptide flanking residues on predicting peptide-MHC-II binding interactions using convolutional Neural Networks
dc.contributor.advisor | Bah, Bubacarr | en_ZA |
dc.contributor.advisor | Degoot, Abdoelnaser M. | en_ZA |
dc.contributor.advisor | Ndifon, Wilfred | en_ZA |
dc.contributor.author | Daumas, Tshenolo Thato Eustacia | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences (Applied Mathematics) | en_ZA |
dc.date.accessioned | 2022-03-11T14:39:59Z | |
dc.date.accessioned | 2022-04-29T09:44:19Z | |
dc.date.available | 2022-03-11T14:39:59Z | |
dc.date.available | 2022-04-29T09:44:19Z | |
dc.date.issued | 2022-04 | |
dc.description | Thesis (MSc)--Stellenbosch University, 2022. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Major histocompatibility complex class II (MHC-II) is one of three classes of MHC molecules and is located on the surface of professional antigen presenting cells. MHC-II molecules present antigenic peptides derived from pathogens that cause infection, for recognition by CD4+ T lymphocytes. MHC-II molecules are critical components of the chain of intercellular interactions required for the adaptive im- mune response to be launched successfully, as this chain is thought to begin with the binding of antigenic peptides by MHC-II molecules. While considerable progress in computational efforts have been made towards un- derstanding peptide-MHC interactions for classes I and II, the case for peptide- MHC-II remains challenging due to MHC-II molecules being highly polymorphic and having open-ended binding grooves. Consequently, MHC-II molecules interact with peptides of varying lengths; therefore, the role that peptide flanking residues (PFRs) play in peptide-MHC-II binding interactions must be considered. We pro- pose an allele-specific convolutional neural network model that simulates binding interactions between peptides and MHC-II molecules that also incorporates PFR information in the input. Deep learning models for peptide-MHC-II interactions that have been published, such as the allele-specific model, NetMHCII and the transallelic model NetMHCI- Ipan have demonstrated encouraging predictive performance. When compared, our proposed CNN model outperformed the latest version of the model, NetMHCII-2.3 across all MHC-II alleles considered with mean AUC value of 0.951 as compared with 0.822 for NetMHCII-3.2. Furthermore, we analysed the impact that PFRs have on modelling peptide-MHC-II binding interactions and laid the foundations of de- veloping a transallelic model based on the CNN model. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Groot histoversoenbaarheidskompleks klas II (MHC-II) is een van drie klasse van MHC molekules en is geleë op die oppervlak van professionele antigeen-presenterende selle. MHC-II molekules bied antigeniese peptiede aan wat afkomstig is van pato- gene wat infeksie veroorsaak, vir herkenning deur CD4+ T limfosiete. MHC-II molekules is kritieke komponente van die ketting van intersellulêre interaksies wat nodig is vir die aanpasbare immuunrespons om suksesvol van stapel te stuur, aan- gesien hierdie ketting vermoedelik begin met die binding van antigeniese peptiede deur MHC-II molekules. Terwyl aansienlike vordering in berekeningspogings gemaak is om peptied-MHC interaksies vir klasse I en II te verstaan, bly die saak vir peptied-MHC-II uitdagend as gevolg van MHC-II-molekules wat hoogs polimorf is en oop-einde bindings- groewe het. Gevolglik, MHC-II molekules interaksie met peptiede van verskil- lende lengtes; daarom, moet die rol wat peptied flankerende residue (PFRs) speel in peptied-MHC-II bindende interaksies oorweeg word. Ons stel ’n alleel-spesifieke konvolusionele neurale netwerk model voor wat bindingsinteraksies tussen peptiede en MHC-II molekules simuleer wat ook PFR-inligting in die inset inkorporeer. Diep leer modelle vir peptied-MHC-II interaksies wat gepubliseer is, soos die al- leelspesifieke model, NetMHCII en die transalleliese model, NetMHCIIpan het be- moedigende voorspellende prestasie getoon. As dit vergelyk word, het ons voorge-stelde CNN-model beter gevaar as die nuutste weergawe van die model, NetMHCII- 2.3 oor alle MHC-II allele wat oorweeg word met gemiddelde AUC waarde van 0,951 in vergelyking met 0,822 vir NetMHCII-3.2. Verder het ons die impak wat PFRe het op die modellering van peptied-MHC-II bindingsinteraksies ontleed en die grondslag gelê van die ontwikkeling van ’n transalleliese model gebaseer op die CNN-model. | af_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | 80 pages | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/124973 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Peptide-MHC-II | en_ZA |
dc.subject | UCTD | en_ZA |
dc.subject | Peptides | en_ZA |
dc.subject | Neural networks (Computer science) | en_ZA |
dc.subject | Major histocompatibility complex | en_ZA |
dc.subject | Histocompatibility antigens -- Binding | en_ZA |
dc.title | The Impact of peptide flanking residues on predicting peptide-MHC-II binding interactions using convolutional Neural Networks | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- daumas_impact_2022.pdf
- Size:
- 3.43 MB
- Format:
- Adobe Portable Document Format
- Description: