A novel approach to identify frequency transient (un)stable sub-networks in low-inertia power systems with high renewable energy penetration

Date
2021-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Due to global environmental concerns, power systems are transitioning from conventional to renewable energy sources (RES). The integration of large-scale inverter-based RES introduces numerous challenges to power system stability, specifically frequency transient stability. The power system becomes more complex and will continue evolving in this direction. Thus, the conventional assumptions and approaches to evaluate the transient stability of the power system frequency become obsolete. The focus of this dissertation is on the impact of network topology on frequency transient stability. This research considers the network's spatial element and the influence of spatially distributed variable inverter-based RES. The power system network is the medium connecting all the generation and load units. Unlike active mitigating measures like virtual inertia control, the network topology can serve as a passive means to maximise frequency transient stability, i.e., the network can form an embedded noise filter. The approach involves Graph Theory and state-space domain representation to model and analyse the power system topology's impact on frequency transient stability. The analytical results undergo validation through simulations of practical and realistic power system networks (IEEE systems) using the DigSilent Power- Factory simulation package. Modelling the power system network as a graph made it possible to make the following contributions to the research field: 1) Give insight into the short time scale (below one-minute temporal res- olution) stochastic wind speed signal as input disturbance (noise signal) to the network. Wind speed increments fit a Gaussian function, and a Markov chain can be used to describe the temporal characteristics. The Markov chain shows that the fluctuating perturbations are biased to continue in the same direction as the previous increment, which is a characteristic of the short time scale temporal nature of wind fluctuations. 2) Understanding the spatial-temporal perturbations from the power system network's perspective due to inverter-based RES utilities. Using high temporal resolution wind speed data shows that the spatial cross-correlations of wind speed fluctuations are low, and due to the transmission line reactance, the impacts of the fluctuating perturbations are mainly within the local network. 3) Identify and understand the topological measures contributing to local- area frequency robustness. An analytical investigation into the graph Lapla- cian facilitated the derivation of the network metrics relevant to transient stability. These network metrics are verified through simulation and shows that the weighted node degree, hierarchical position, and effective reactance to the perturbation location are relevant. The impact of an imbalance disturbance propagates with mechanical wave characteristics, and the derivation shows that the propagation velocity is a function of inertia and transmission capacity. The topological measures influence the impact propagation, and they contribute to how the network dissipates the disturbance impact energy. 4) The correlation between stochastic generation utilities, like wind or solar photovoltaic, is illustrated and shown to be a crucial limiting factor consider- ing large-scale inverter-based RES integration. The simulation results verify that the rate-of-change-of-frequency (RoCoF) is inversely proportional to the effective reactance to the perturbation location. It is thus worth considering the effective reactance between stochastic generation and inertia sources in low-inertia power systems when planning the placement of inverter-based RES to minimise the excitation of the RoCoF responses. 5) A new approach to evaluate power system inertia for frequency transient stability, based on the previously mentioned ndings, is proposed to identify and group nodes/buses to form local inertia areas. Spectral Graph Theory and clustering serve to be valuable in identifying local inertia areas based on network regions that maximise the within-cluster mesh and group nodes with coherent dynamics. These inertia areas provide a spatial awareness of a power system network's frequency transient stability. The proposed approach makes it possible to determine where inertia or other equivalent ancillary service support is of greater importance and thus optimise the inertia distribution to maximise system frequency robustness in low-inertia power systems. 6) Contributing to understanding the concept of optimising a power sys- tem network in terms of topology, real and virtual inertia placement, and the distribution of stochastic generation utilities to maximise system frequency transient stability. These research contributions ultimately point to converting distributed noise input from spatially distributed and stochastic RES generation to a robust and stable frequency signal through the topology of the power sys- tem network to help network planners design optimal, RES rich, and stable networks.
AFRIKAANSE OPSOMMING: As gevolg van wêreldwye omgewingsbewustheid ondergaan kragstelsels 'n oorgang van konvensionele energiebronne na hernubare energiebronne (HEB). Die integrasie van grootskaalse omsetter-gebaseerde HEB bied talle uitdagings vir kragstelselstabiliteit, spesifiek vir frekwensie-oorgangstabiliteit. Die kragstelsel word meer ingewikkeld en sal voortgaan om in hierdie rigting te ontwikkel. Dus word die konvensionele aannames en benaderings om die oor- gangstabiliteit van die kragstelselfrekwensie te evalueer, verouderd. Die fokus van hierdie tesis is op die impak van die netwerktopologie op frekwensie-oorgangstabiliteit. Hierdie navorsing besin oor die ruimtelike ele- ment van die netwerk en die invloed van ruimtelik verspreide, afwisselende op- wekkings, omsetter-gebaseerde HEB. Die kragstelselnetwerk is die medium wat al die opwekking- en las-eenhede verbind. In teenstelling met aktiewe netwerk ondersteuning soos virtuele traagheidsbeheer, kan die netwerktopologie dien as 'n passiewe middel om die frekwensie-oorgangstabiliteit te maksimeer. Dit wil sê die netwerk kan 'n ingeboude ruisfilter vorm. In hierdie studie is Grafiekteorie en toestand-ruimtelike domeinvoorstelling gebruik om die impak van die kragstelseltopologie op die frekwensie-oorgang- stabiliteit te modelleer en te analiseer. Die analitiese resultate word bevestig deur simulasies van praktiese en realistiese kragstelselnetwerke (IEEE-stelsels) met die gebruik van die DigSilent PowerFactory-simulasiepakket. Deur die kragstelselnetwerk as 'n grafiek te modelleer, is die volgende by- draes gelewer: 1) Insig oor die korttydskaal (tempo-resolusie van onder een minuut) sto- gastiese windspoedsein as insetversteuring (geraassein). Die windspoed inkre- mente pas 'n Gaussiese-funksie, en die dinamika kan met 'n Markov-ketting beskryf word. Die Markov-ketting toon aan dat die wisselende versteurings geneig is om in dieselfde rigting as die vorige windspoed toename voort te gaan, wat kenmerkend is van die korttydskaal veranderlike aard van wind-spoedskommeling. 2) Begrip van die ruimtelike-tempo versteurings vanuit die perspektief van die kragstelsel weens omsetter-gebaseerde HEB-kragstasies. Deur windspoed- data met 'n hoë tydresolusie te gebruik, toon hierdie navorsing aan dat die ruimtelike kruiskorrelasie van windspoed veranderinge laag is. As gevolg van die transmissielynreaktansie is die impak van die wisselende versteurings hoof- saaklik binne die plaaslike netwerkarea. 3) Identifiseer en verstaan die topologiese eienskappe wat bydra tot die frekwensie-robuustheid van die plaaslike netwerk gebied. 'n Analitiese on- dersoek van die grafiek-Laplacian lei na die netwerkeienskappe wat verband hou met oorgangstabiliteit. Hierdie netwerkeienskappe word deur simulasie geverifieer en toon aan dat die geweegde nodusgraad, hiërargiese posisie en effektiewe reaktansie tot by die versteurings punt relevant is. Die impak van 'n wanbalansversteuring propageer met die kenmerke van 'n meganiese golf en die afleiding dui daarop dat die voortplantingsnelheid 'n funksie van traagheid en transmissiekapasiteit is. Die topologiese eienskappe beïnvloed die impakver- spreiding en dit dra by tot die manier waarop die netwerk die impak-energie van die steuring absorbeer. 4) Die korrelasie tussen stogastiese kragstasies, soos wind- of sonkrag- fotovoltaïese plase, word geïllustreer en is 'n deurslaggewende beperkende fak- tor vir grootskaalse omsetter-gebaseerde HEB-integrasie. Die resultate van die simulasie bevestig dat die tempo van verandering van frekwensie (TVF) omge- keerd eweredig is aan die effektiewe reaktansie tot by die versteuringspunt. Dit is dus die moeite werd om die effektiewe reaktansie tussen stogastiese op- wekking en traagheidsbronne in lae-traagheid stelsels in ag te neem tydens die beplanning van omsetter-gebaseerde HEB plasing om die opwekking van die TVF-reaksies te minimeer. 5) 'n Nuwe benadering om traagheid van 'n kragstelsel vir frekwensie- oorgangstabiliteit te evalueer, word voorgestel om nodusse/busse te identifiseer en te groepeer om plaaslike traagheidsgebiede te vorm. Spektrale Grafiek- teorie en groepering help met die identisering van plaaslike traagheidsge- biede op grond van netwerkstreke wat die binne-groep-maas en dus ook die samehangende dinamika maksimeer. Hierdie traagheidareas bied 'n ruimte- like bewustheid van 'n kragstelselnetwerk se frekwensie-oorgangstabiliteit. Die voorgestelde benadering maak dit moontlik om vas te stel waar traagheid of ander ekwivalente aanvullende diensondersteuning van groter belang is, en sodoende die traagheidsverspreiding te optimeer om die stelselfrekwensie- robuustheid in lae-traagheid stelsels te maksimeer. 6) Lewer 'n bydrae tot die begrip van die konsep kragstelselnetwerk-opti- mering in terme van topologie, werklike en virtuele traagheidplasing, en die verspreiding van stogastiese kragstasies om sodoende die oorgangstabiliteit van die stelselfrekwensie te maksimeer. Hierdie navorsingsbydraes dui uiteindelik op die omskakeling van verspreide geraas-invoer vanaf ruimtelik verspreide en stogastiese HEB-opwekking na 'n robuuste en stabiele frekwensie-sein deur die kragstelselnetwerk-topologie. Dit lewer nuwe insig om netwerkbeplanners te help met die ontwerp van optimale, HEB-ryk en stabiele netwerke.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
A novel approach to identify frequency transient (un)stable sub-networks in low-inertia power systems with high renewable energy penetration, UCTD, Flow, Transient (Aerodynamics), Frequency analysis (Dynamics), Electric power systems, Electric networks, Electric power distribution
Citation