Acceleration based manoeuvre flight control system for unmanned aerial vehicles
dc.contributor.advisor | Jones, T. | |
dc.contributor.author | Peddle, Iain K. | |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering. | en_ZA |
dc.date.accessioned | 2012-08-10T21:50:22Z | |
dc.date.available | 2014-03-31T03:00:03Z | |
dc.date.issued | 2008-12 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2012. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: A strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: ’n Strategie vir die ontwerp van ’n effektiewe, prakties haalbaar, robuuste, rekenkundig effektiewe outoloods vir drie dimensionele maneuver vlugbeheer van onbemande vliegtuie word voorgestel. Die kerneienskap van die strategie is die ontwerp van oriëntasie-onafhanklike binnelus-versnellingbeheerders. Hierdie beheerders stel die navigasie buitelus in staat om die voertuig as ’n puntmassa met ’n stuurbare versnellingsvektor te beskou. Trajekgenerasie is ook vereenvoudig deurdat verwysingstrajekte slegs kinematies haalbaar hoef te wees. Robuustheid word verkry deur onsekerhede en versteuringsverwerping op ’n versnellingsvlak te hanteer. Die gedetaileerde ontwerp en saamhangende analise van die binnelus versnellingsbeheerders word uitgevoer vir die geval waar die invalshoeke klein is. Dit word aangetoon dat, onder praktiese omstandighede, die binnelus dinamika ontkoppel kan word en lineêr word, wat die afleiding van geslotevorm poolplasingoplossings toelaat. Dimensionele en genormaliseerde, nie-dimensionele tydvariante van die binnelusbeheerders word ontwerp en hul onderskeidelike voordele word uitgewys. Poolplasing beperkings, wat ontstaan as gevolg van die tipiese geringe nie-minimum fasegedrag van voertuigdinamika, word ontwikkel. ’n Gepaste generiese, voertuig onafhanklike navigasiebeheer algoritme vir gebruik saam met die binnelus-versnellingsbeheerders word voorgestel. Die voertuig word om ’n kinematies haalbare verwysingstrajek deur hierdie navigasie algoritme gereguleer. ’n Aantal fundamentele trajekte word voorgestel wat maklik gekombineer kan word om komplekse drie dimensionele maneuvers te vorm. Die veelsydigheid en funksionaliteit van die outoloods word deur simulasieresultate met ’n verskeidenheid voertuie en verwysingstrajekte gedemonstreer. | af_ZA |
dc.format.extent | xv, 264 p. : ill. | |
dc.identifier.uri | http://hdl.handle.net/10019.1/44331 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Aircraft control | en_ZA |
dc.subject | Autonomous vehicles | en_ZA |
dc.subject | UAV flight control | en_ZA |
dc.subject | Acceleration control | en_ZA |
dc.subject | Aircraft guidance | en_ZA |
dc.subject | Trajectory tracking | en_ZA |
dc.subject | Manoeuvre flight control | en_ZA |
dc.subject | Autopilot | en_ZA |
dc.subject | Drone aircraft | en_ZA |
dc.title | Acceleration based manoeuvre flight control system for unmanned aerial vehicles | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- peddle_acceleration_2008.pdf
- Size:
- 1.85 MB
- Format:
- Adobe Portable Document Format
- Description: