Strength, durability, thermal performance and sustainability assessment of one-part geopolymer concrete masonry units.

dc.contributor.advisorBabafemi, Adewumi Johnen_ZA
dc.contributor.advisorDe Villiers, Wibkeen_ZA
dc.contributor.authorBhayat, Moegamat Tashriqen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.en_ZA
dc.date.accessioned2025-01-16T09:18:06Zen_ZA
dc.date.available2025-01-16T09:18:06Zen_ZA
dc.date.issued2024-12en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2024.en_ZA
dc.description.abstractANGLISH ABSTRACT: South Africa currently faces a major backlog in the delivery of affordable housing units, which are typically constructed with conventional fired clay-based or cement-based masonry units. Additionally, the production of clay-based and cement-based masonry places a significant impact on the natural environment due to the clay firing and limestone calcination procedures, respectively. The need for alternative masonry units (AMUs) satisfying social, economic and environmental performance is evident. One-part geopolymer cement, produced from the alkali activation of aluminosilicate waste via solid alkali activators, has become an attractive low-carbon cement alternative showcasing superior mechanical, durability and thermal properties. Additionally, the use of alternative concrete aggregates is valuable toward mitigating the intense pressure placed on conventional aggregate resources by the built environment. This study investigated fly ash (FA), ground granulated blast furnace slag (GGBFS) and metakaolin (MK)-based one-part geopolymer concrete-based AMUs synthesised by solid alkali activators comprising sodium hydroxide (NaOH), sodium metasilicate pentahydrate (Na₂SiO₃.5H₂O) and calcium hydroxide (Ca(OH)₂). Additionally, expanded vermiculite (EV) and recycled plastic waste (RESIN8) were substituted as an alternative fine aggregate. The AMUs developed in this study include the FA and GGBFS-based (FABS) and the FA and MK-based (FAMK) units. EV was incorporated at 15% replacement in the development of the EV-based FA and GGBFS (FSEV) unit and the EV-based FA and MK (FMEV) unit. RESIN8 was incorporated at 5% replacement in the development of the RESIN8-based FA and GGBFS (FSR8) unit. All AMUs were subject to ambient curing. The AMUs were tested for their mechanical properties (compressive strength and elastic modulus) and density, durability properties (cold and boiled water absorption, initial rate of absorption, shrinkage and efflorescence extent), thermal properties (thermal conductivity, thermal resistance and thermal transmittance of wall specimens) and sustainability (cost analysis and lifecycle assessment). The average compressive strength of all AMUs satisfies the minimum strength requirement for masonry units. The elastic modulus for all AMUs falls within an acceptable range for masonry materials. The water absorption for all AMUs falls under the absorption limit for concrete-based masonry units. The initial rate of absorption for all AMUs are within an acceptable range for masonry units. All AMUs exhibit higher shrinkage in comparison to conventional concrete. The extent of efflorescence for all AMUs was slight to none. The thermal resistance (R-value) for all AMU wall specimens does not meet the minimum requirement for external walls in South Africa, yet the walls still possess comparable R-values to that of conventional concrete-based masonry units used in South Africa. The cost of the AMUs is roughly two times higher than that of a conventional concrete-based masonry unit, highlighting the economic challenge of adopting one-part geopolymer concrete as an alternative to conventional masonry materials for affordable housing construction. A cradle to gate and cradle to grave life cycle analysis of all AMUs showcased a reduction between 30% to 90% in the carbon footprint when compared to conventional masonry units. Overall, the outcomes of this study showcase the potential of one-part geopolymer cement and alternative aggregates to replace conventional masonry materials.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Suid-Afrika staar tans 'n groot agterstand in die lewering van bekostigbare behuisingseenhede in die gesig, wat tipies gebou word met konvensionele gebrande klei- of sement-gebaseerde messel-eenhede. Daarbenewens plaas die produksie van klei- en sement-gebaseerde messelwerk 'n beduidende impak op die natuurlike omgewing as gevolg van die klei-vuur en kalksteen kalsinasie prosedures, onderskeidelik. Die behoefte aan alternatiewe messelwerkeenhede (AMU's) wat sosiale, ekonomiese en omgewingsprestasie bevredig, is duidelik. Een-deel geopolimeer sement, vervaardig uit die alkali-aktivering van aluminosilikaatafval via soliede alkali-aktiveerders, het 'n aantreklike lae-koolstof sement-alternatief geword wat voortreflike meganiese, duursaamheid en termiese eienskappe vertoon. Daarbenewens is die gebruik van alternatiewe betonaggregate waardevol om die intense druk wat deur die geboude omgewing op konvensionele aggregaathulpbronne geplaas word, te versag. Hierdie studie het vliegas (FA), gemaalde gegranuleerde hoogoondslak (GGBFS) en metakaolien (MK)-gebaseerde eendelige geopolimeer beton-gebaseerde AMU's ondersoek wat deur soliede alkali-aktiveerders bestaan uit natriumhidroksied (NaOH), natriummetasilikaatpentahidraat (Na₂SiO₃). 5H₂O) en kalsiumhidroksied (Ca(OH)₂). Daarbenewens is uitgebreide vermikuliet (EV) en herwonne plastiekafval (RESIN8) vervang as 'n alternatiewe fyn aggregaat. Die AMU's wat in hierdie studie ontwikkel is, sluit die FA- en GGBFS-gebaseerde (FABS) en die FA en MK-gebaseerde (FAMK) eenhede in. EV is teen 15% vervanging geïnkorporeer in die ontwikkeling van die EV-gebaseerde FA en GGBFS (FSEV) eenheid en die EV-gebaseerde FA en MK (FMEV) eenheid. RESIN8 is teen 5% vervanging geïnkorporeer in die ontwikkeling van die RESIN8-gebaseerde FA en GGBFS (FSR8) eenheid. Alle AMU's was onderhewig aan omgewingsuitharding. Die AMU's is getoets vir hul meganiese eienskappe (druksterkte en elastiese modulus) en digtheid, duursaamheid eienskappe (koue en gekookte water absorpsie, aanvanklike tempo van absorpsie, krimp en uitbloei mate), termiese eienskappe (termiese geleidingsvermoë, termiese weerstand en termiese transmissie van muurmonsters) en volhoubaarheid (koste-analise en lewensiklusbeoordeling). Die gemiddelde druksterkte van alle AMU's voldoen aan die minimum sterktevereiste vir messelwerkeenhede. Die elastiese modulus vir alle AMU's val binne 'n aanvaarbare reeks vir messelmateriaal. Die waterabsorpsie vir alle AMU's val onder die absorpsielimiet vir beton-gebaseerde messelwerkeenhede. Die aanvanklike absorpsietempo vir alle AMU's is binne 'n aanvaarbare reeks vir messelwerkeenhede. Alle AMU's vertoon hoër krimp in vergelyking met konvensionele beton. Die mate van bloei vir alle AMU's was gering tot geen. Die termiese weerstand (R-waarde) vir alle AMU-muurmonsters voldoen nie aan die minimum vereiste vir buitemure in Suid-Afrika nie, maar die mure besit steeds vergelykbare R-waardes as dié van konvensionele beton-gebaseerde messelwerkeenhede wat in Suid-Afrika gebruik word. Die koste van die AMU's is ongeveer twee keer hoër as dié van 'n konvensionele beton-gebaseerde messelwerk-eenheid, wat die ekonomiese uitdaging beklemtoon om eendelige geopolimeerbeton as 'n alternatief vir konvensionele messelmateriaal vir bekostigbare behuisingskonstruksie aan te neem. 'n Wieg tot hek en wieg tot graf lewensiklusontleding van alle AMU's het 'n vermindering tussen 30% tot 90% in die koolstofvoetspoor getoon in vergelyking met konvensionele messelwerkeenhede. Oor die algemeen toon die uitkomste van hierdie studie die potensiaal van een-deel geopolimeer sement en alternatiewe aggregate om konvensionele messelmateriaal te vervang.af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxvii, 150 pages : illustrationsen_ZA
dc.identifier.urihttps://scholar.sun.ac.za/handle/10019.1/131527en_ZA
dc.language.isoenen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshMasonry -- Buildings -- Mechanical properties en_ZA
dc.subject.lcshInorganic polymers en_ZA
dc.subject.lcshGeopolymerisationen_ZA
dc.subject.lcshConcrete construction industryen_ZA
dc.subject.lcshConcrete masonry -- Thermal propertiesen_ZA
dc.subject.lcshMaterials -- Compression testingen_ZA
dc.subject.lcshUCTDen_ZA
dc.titleStrength, durability, thermal performance and sustainability assessment of one-part geopolymer concrete masonry units.en_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bhayat_durability_2024.pdf
Size:
9.09 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: