Classification of subspaces
dc.contributor.editor | Herrmann, Christian | |
dc.contributor.editor | Moresi, Remo | |
dc.contributor.editor | Schuppli, Reto | |
dc.contributor.editor | Wild, Marcel | |
dc.date.accessioned | 2014-10-03T09:12:23Z | |
dc.date.available | 2014-10-03T09:12:23Z | |
dc.date.issued | 1998 | |
dc.description | Wild, M., Hermann, C., Moresi, R., Schuppli, R. 1998. Classification of subspaces, in Keller, H.A., Kunzi, U.-M., Wild, M. (eds.) Orthogonal geometry in infinite demensional vector spaces. Bayreuth : Mathematisches Institut der Universitat Bayreuth. 55-170. | en_ZA |
dc.description | Series -- Bayreuther mathematischen Schriften; Heft 53 | en_ZA |
dc.description.abstract | 1.1 Statement of the problems and the lattice method Let E and E' be non-degenerate €-hermitean spaces over the same data (k, €, -) (see 1.1.1) with linear subspaces F and F', respectively. The.pairs (E, F) and (E', F') are isometric if there is an isometry <jJof E onto E' such that <jJF= F'. Isometry classification of pairs means reduction to the classification of spaces, the latter being a classical and often difficult problem even in finite dimensions. | en_ZA |
dc.format.extent | p. 50-170 : ill. | |
dc.identifier.issn | 0172-1062 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/95643 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Mathematisches Institut der Universitat Bayreuth | |
dc.subject | Orthogonal polynomials | en_ZA |
dc.subject | Vector spaces | en_ZA |
dc.title | Classification of subspaces | en_ZA |
dc.type | Chapters in Books | en_ZA |