Study of cyclotomic extensions of degree power of 2 and classification of radical extensions up to isomorphism
dc.contributor.advisor | Marques, Sophie | en_ZA |
dc.contributor.author | Mrema, Elizabeth | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. | en_ZA |
dc.date.accessioned | 2024-02-20T10:58:55Z | |
dc.date.accessioned | 2024-04-26T13:12:37Z | |
dc.date.available | 2024-02-20T10:58:55Z | |
dc.date.available | 2024-04-26T13:12:37Z | |
dc.date.issued | 2024-03 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2024. | en_ZA |
dc.description.abstract | In this thesis, we gain a deeper understanding of cyclotomic extensions of degree powers of 2 and the classification of radical extensions (both separable and insepaโ rable) up to isomorphism. Our main results about cyclotomic extensions of degree power of 2 describe their Galois structures, their degrees, their subextensions, their tower decompositions, and the minimal polynomials of some traces of root of unity generating all their subsextensions over an arbitrary base field. In exploring these asโ pects, we discover two important invariants ๐๐โ and ๐๐โ where ๐ is a prime number, holding essential information about cyclotomic extensions of degree 2 and those genโ erated by primitive (2๐)๐กโ roots of unity where ๐ โ โ. In our quest to provide explicit expressions for the coefficients of the minimal polynomials of the subextensions of cyclotomic extensions generated by primitive (2๐)๐กโ root of unity, we discover fasciโ nating characterizations, some of which are linked to the wellโknown Catalan numโ bers solving Combinatorial problems using field theory. Building upon the insights gained from our exploration of cyclotomic extensions, we provide a comprehensive classification of separable and inseparable radical exโ tensions up to isomorphism. In order to have a global understanding of these extenโ sions up to isomorphism, we exhibit a meaningful parameterization of the set of isoโ morphic radical extensions into moduli spaces involving the action of some groups. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: In hierdie tesis verkry ons โn dieper verstaan van siklotomiese uitbreidings waarvan die graad magte van 2 is en die klassifikasie van radikale uitbreidings (skeibaar en onโ skeibaar), tot isomorfisme. Ons hoofresultate oor siklotomies uitbreidings waarvan die graad ล mag van 2 is, beskryf hulle Galoisโstrukture, hulle grade, hulle deeluitโ breidings, hulle toringโontbindings, en die minimale polinome van sommige spore van eenheidwortels wat al hul deeluitbreidings oor โn willekeurige basisliggaam geโ nereer. Deur hierdie aspekte te ondersoek, ontdek ons twee belangrike invariante ๐๐โ en ๐๐โ waar ๐ โn priemgetal is, wat noodsaaklike inligting bevat oor siklotomiese uitbreidings van graad 2 en dieฬ gegenereer deur primitiewe (2๐)๐๐ eenheidswortels waar ๐ โ โ. In ons strewe om eksplisiete uitdrukkings te verskaf vir die koeฬffisiโ eฬnte van die minimale polinome van die deeluitbreidings van siklotomiese uitbreiโ dings gegenereer deur primitiewe (2๐)๐๐ eenheidswortels, ontdek ons fassinerende karakteriserings, waarvan sommige gekoppel is aan die bekende Katalaanse getalle wat kombinatoriese probleme oplos deur liggaamsteorie te gebruik. Voortbouend op die insigte verkry uit ons verkenning van siklotomiese uitbreiโ dings, bied ons โn omvattende klassifikasie van skeibare en onskeibare radikale uitโ breidings, tot isomorfisme. Ten einde โn globale verstaan van hierdie uitbreidings, tot isomorfisme, te heฬ, toon ons โn betekenisvolle parameterisering van die stel isoโ morfiese radikale uitbreidings in moduliโruimtes wat die aksie van sommige groepe behels. | af_ZA |
dc.description.version | Doctorate | en_ZA |
dc.identifier.uri | https://scholar.sun.ac.za/handle/10019.1/130317 | |
dc.language.iso | en_ZA | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject.lcsh | Field extensions (Mathematics) | en_ZA |
dc.subject.lcsh | Cyclotomic fields | en_ZA |
dc.subject.lcsh | Isomorphisms (Mathematics) | en_ZA |
dc.subject.lcsh | Galois modules (Algebra) | en_ZA |
dc.subject.name | UCTD | en_ZA |
dc.title | Study of cyclotomic extensions of degree power of 2 and classification of radical extensions up to isomorphism | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mrema_study_2024.pdf
- Size:
- 2.25 MB
- Format:
- Adobe Portable Document Format
- Description: