Development of a conceptual framework for integrating intelligent-product structures into a flexible manufacturing system
dc.contributor.advisor | Bitsch, Günter | en_ZA |
dc.contributor.advisor | De Kock, Imke | en_ZA |
dc.contributor.author | Burkart, Adrian | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering. | en_ZA |
dc.date.accessioned | 2022-11-16T12:56:10Z | en_ZA |
dc.date.accessioned | 2023-01-16T12:50:44Z | en_ZA |
dc.date.available | 2022-11-16T12:56:10Z | en_ZA |
dc.date.available | 2023-01-16T12:50:44Z | en_ZA |
dc.date.issued | 2022-11 | en_ZA |
dc.description | Thesis (MEng) -- Stellenbosch University, 2022. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Product complexity, shorter product life cycles, and short lead times to market challenge the manufacturing industry. Consequently, manufacturers seek to respond with a growing product variety. and new business models to serve the customer’s individual needs. Thus, there is a need for flexible. manufacturing. In particular multi-model production requires enhanced communication and decision-making of the manufacturing resources. Addressing these challenges without IoT technologies will be difficult. Thus, integrating intelligent-product structures is the leading pathway toward a flexible manufacturing system. The industry 4.0 paradigm requires methods for integrating IoT Solutions into manufacturing. These solutions mainly consist of connected, intelligent products to increase flexibility and adaptability in smart factories. However, identifying the requirements and solution scenarios incorporating intelligent products presents a challenge for the manufacturing industry, especially in the SME sector. There are still uncertainties when implementing intelligent-product structures and managing mixed product intelligence structures holistically. This thesis aims twofold: firstly, contextualising flexibility, intelligent products, and their required technologies. Secondly, providing a conceptual framework to analyse the existing manufacturing environment and derive intelligent-product structures. In the context of flexibility, intelligent products only directly influence the four dimensions: Material handling flexibility, Process flexibility, Routing flexibility, and Program flexibility. The systematic literature review provides comprehensive models for defining and classifying intelligent products in manufacturing. A generic product classification regarding its functionalities across the entire product lifecycle is established, and fundamental technologies for each functionality are derived. Thus, the literature review addresses the first part of the research aim. The Intelligent-Product Initiation Decision-Support (IPIDS) framework, as a designed result of the requirement specification, defines, analyses, designs, and executes intelligent products and resources within the context of flexible manufacturing. Methods, tools, and processes are provided to guide the user through the four stages of the IPIDS framework. The first stage of definition assesses the existing infrastructure of the manufacturing by classifying the products and resources according to functionalities. In addition, manufacturing problems are identified and classified. Subsequently, a feasibility study of the identified problems derives the desired solution to manage the manufacturing problem with intelligent products. Stage 3 specifies design requirements based on the target functionalities of the products. Finally, the design requirements are used to develop intelligent products. Thus, the IPIDS framework addresses the second part of the research aim of providing a holistic concept to assess the existing manufacturing environment, identifying value-adding factors through intelligent products, and deriving design and implementation concepts. The evaluation of the IPIDS framework is addressed through a theoretical verification and a prototype implementation in a learning factory. The implementation findings showcase that the IPIDS framework provides applicable, valuable and practicable methods for assessing the manufacturing environment based on the functionalities of the products and resources and deriving implementation concepts for intelligent-product structures. The validation is based on a comprehensive application of the IPIDS framework and statistical analysis, comparing the initial situation with the developed solution. The validity and applicability of the IPIDS framework provide a premise for intelligent-product structures in flexible manufacturing systems. | af_ZA |
dc.description.abstract | AFRIKAANS OPSOMMING: Produkkompleksiteit, korter produklewensiklusse en kort aanlooptye om produkte op die mark te kry is van die uitdagings in die vervaardigingsbedryf. Vervaardigers probeer hierop reageer met 'n al hoe wyer produkverskeidenheid en nuwe bedryfsmodelle om in kliénte se individuele behoeftes te voorsien. Dit skep 'n behoefte aan buigsame vervaardiging, veral multimodelproduksie, wat beter kommunikasie en besluitneming vereis. Dit sal moeilik wees om hierdie uitdagings sonder IoT-tegnologieé die hoof te bied. Daarom is die integrasie van intelligente produkstrukture die beste roete om 'n buigsame vervaardigingstelsel te skep. Die Nywerheid 4.0-paradigma vereis die integrasie van IoT-oplossings by vervaardiging. Hierdie oplossings bestaan hoofsaaklik uit gekoppelde intelligente produkte om buigsaamheid en aanpasbaarheid in slimfabrieke te verhoog. Nogtans vind die vervaardigingsbedryf, en veral die KMO- sektor, dit uitdagend om die vereistes en oplossings vir die integrasie van intelligente produkte te identifiseer. Daar is steeds heelwat onsekerhede met betrekking tot die implementering van intelligente produkstrukture en die holistiese bestuur van gemengde produkintelligensiestrukture. Die doel van hierdie tesis is tweérlei: eerstens, om buigsame intelligente produkte en die tegnologievereistes daarvan te kontekstualiseer, en tweedens, om 'n konseptuele raamwerk te voorsien om die bestaande vervaardigingsomgewing te ontleed en intelligente produkstelsels af te lei. Wat buigsaamheid betref, het intelligente produkte slegs 'n direkte invloed op die Vier dimensies van materiaalhantering, proses, wegbepaling en programmering. Die stelselmatige literatuuroorsig bied omvattende modelle om intelligente produkte in vervaardiging te definieer en te klassifiseer. 'n Generiese produkklassifikasie word op grond van die produkvermoéns deur die hele produklewensiklus bepaal, waarna damentele tegnologieé vir elke vennoé afgelei word. Die literatuuroorsig beantwoord dus aan die eerste deel van die navorsingsdoel. Die besluitnemingsteunraamwerk vir die implementering van intelligente produkte (IPIDS), wat volgens die vereiste spesifikasie ontwe1V is, bepaal, ontleed, ontwe1V en ontwikkel intelligente produkte en hulpbronne in die konteks van buigsame vervaardiging. Metodes, instmmente en prosesse word voorsien om die gebruiker deur die Vier fases van die IPIDS-raamwerk te begelei. Die eerste fase bepaling — beoordeel die bestaande infrastluktuur van die vervaardigingsbedryf deur die produkte en hulpbronne op grond van vermoé te klassifiseer. Boonop word vervaardigingsprobleme geidentifiseer en geldassifiseer. Daarna dui 'n haalbaarheidstudie van die geidentifiseerde probleme op die gewenste oplossing om die vervaardigingsprobleem met behulp van intelligente produkte te bestuur. Fase 3 spesifiseer ontwerpvereistes op grond van die teikenvennoéns van die produkte. Laastens word die ontwerpvereistes gebruik om intelligente produkte te ontwikkel. Die IPIDS-raamwerk beantwoord dus aan die tweede deel van die navorsingsdoel deur 'n holistiese konsep te bied om die bestaande vervaardigingsomgewing te beoordeel, waardetoevoegingsfaktore deur intelligente produkte te identifiseer, en ontwem- en implementeringskonsepte afte lei. Die IPIDS-raamwerk word geévalueer deur 'n teoretiese stawing en 'n prototipe-implementering in 'n opleidingsfabriek. Die resultate van die implementering toon dat die IPIDS-raamwerk gepaste, nuttige en praktiese metodes bied om die vervaardigingsomgewing op grond van produk- en hulpbronvermoéns te beoordeel en implementeringskonsepte vir intelligente produkstrukture af te lei. Die stawing is gegrond op 'n omvattende toepassing van die IPIDS-raamwerk en statistiese ontleding wat die aanvanklike scenario met die ontwikkelde oplossing vergelvk. Die geldigheid en toepaslikheid van die aanvanklike scenario met die ontwikkelde oplossing vergelyk. Die geldigheid en toepaslikheid van die IPIDS-raamwerk dien dus as grondslag vir die implementering van intelligente produkstrukture in buigsame vervaardigingstelsels. | af_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | xi, 111 pages : illustrations | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/126113 | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Smart structures | en_ZA |
dc.subject | Groupware (Computer software) | en_ZA |
dc.subject | Flexible manufacturing systems | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Development of a conceptual framework for integrating intelligent-product structures into a flexible manufacturing system | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- burkart_conceptual_2022.pdf
- Size:
- 2.88 MB
- Format:
- Adobe Portable Document Format
- Description: