Development of a supervised machine learning model to enhance urban water system management: a case study of Stellenbosch municipality
Date
2023-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Globally, the challenges of conserving freshwater resources are becoming increasingly complex. Among the reasons cited by several researchers are the continuing growth of the world’s population, urbanisation, and the adverse effects of climate change on rainfall amounts and cycles. The complexity stems from the fact that human and natural systems are inextricably linked and interdependent. This makes managing urban water systems a major challenge that requires an integrated management approach capable of addressing the increasing variables that are interdependent and interrelated in an urban water system. To this end, tools continue to be developed to assist water resources managers to improve their management
strategies, while data-driven methods are currently gaining popularity.
Researchers have consistently emphasised the importance of accurately predicting the water demands of an urban water system as a prerequisite for effective freshwater management. However, the increasingly interconnected and interdependent variables that result from the interactions between human and natural systems pose a significant challenge to accurately predicting water demand. Consequently, traditional modelling tools are also increasingly becoming inadequate. The impacts of climate change, which lead to uncertainties in precipitation cycles, and rapid urbanisation are the main
causes of the inadequacy of traditional modelling tools, as they cannot accurately quantify the uncertainties that arise in the system. As a result, data-driven machine learning techniques are becoming more common and are currently widely used in the Global North. In contrast, their use in the Global South is currently very limited, which is also true in South Africa.
Another challenge posed by climate change is the changes in evapotranspiration and precipitation that limit terrestrial water storage and necessitate the search for alternative water sources. Among several options for alternative water sources, the case study area (Stellenbosch Municipality) has considered the reuse of municipal wastewater. However, to date, Stellenbosch Municipality has not developed this resource to any significant extent. It is therefore imperative to investigate the barriers to the development of this resource in the Stellenbosch Municipality. The main goal of this study was to use technology to develop a strategy for the sustainable management of Stellenbosch Municipality’s urban water system. The transdisciplinary research approach was the overarching research methodology used in this study because it provided the researcher with the flexibility to choose methods from different research traditions. Other research methods used in the transdisciplinary approach included a critical systematic literature review, interactive
management, simulation, a standard cross-industry data-mining research process, and a case study. The mixed-methods exploratory sequential research design, characterised by two phases, was applied to the Stellenbosch Municipality as the case study, where the unit of analysis was urban water demand. The first phase consisted of collecting qualitative data through a soft management systems interactive research method from a purposively selected focus group of municipal wastewater specialists and community representatives. The collected qualitative data were modelled using Concept Star decision-making tools. The second phase consisted of quantitative data
collection and simulation guided by standard cross-industry processes for data-mining research. Both traditional time series models and supervised machine learning models were developed for forecasting and predicting run-of-river abstraction for the Stellenbosch Municipality.
Qualitative studies conducted on the factors that hinder the implementation of
municipal wastewater reuse as an alternative water source in the Stellenbosch
Municipality found that social issues were the main cause, followed by deficiencies in water laws, policies, and guidelines for the implementation of municipal wastewater reuse projects. The four principles of human-centred design were identified as an appropriate methodology for desirable implementation of wastewater reuse projects in the Stellenbosch Municipality. Quantitative studies that predicted urban water demand in the Stellenbosch Municipality showed nonlinearity between total water consumption
and population/household growth, which should be the norm. From the exploratory data analysis (EDA), the variable run-of-river abstraction was set as the dependent variable for the modelling processes. The following models were developed: traditional Autoregressive Integrated Moving Average and Seasonal Autoregressive Integrated Moving Average models and supervised machine learning models; thus AdaBoost, Gradient Boosting, Stochastic Gradient Boosting, Random Forest, and Artificial Neural Networks. The model with the best performance was Random Forest, followed by Stochastic Gradient Boosting, both of which the researcher saved and recommended
for production. The study’s application of the transdisciplinary research methodology is a unique contribution to urban water management research. In addition, this study helps to highlight the importance of a human-centred design approach and the use of datadriven supervised machine learning techniques in the management of urban water systems, which the researcher considers a human-centred data-driven technological triad for the management of urban water systems. It is an effective framework for deploying novel approaches to water management in an urban setting that can be
applied to other communities.
AFRIKAANSE OPSOMMING: Die bewaring van varswaterbronne en die herontdekking van nuwe bronne is wêreldwyd ’n wetenskaplike probleem van groot belang. Daarbenewens het die bestuur van veral stedelike afloopwater in ingewikkeldheid toegeneem. Navorsers wat die probleem bestudeer het, het tot die gevolgtrekking gekom dat daar ’n oorsaaklike verband bestaan tussen die voortdurende toename in die wêreldbevolking, verstedeliking, die negatiewe uitwerking van klimaatsverandering en die sikliese verband met reënval, en die afname en besoedeling van stedelike waterbronne. Die ingewikkeldheid van die probleem word verder vermeerder deur die wisselwerking tussen mens en natuur. Dit is duidelik dat die wisselwerking tussen bogemelde faktore die bestuur van stedelike waterbronne ’n uitdagende taak maak. Dit is voor die hand liggend dat ’n oorhoofse en geïntegreerde bestuursbenadering noodsaaklik is wat sowel die onderlinge interafhanklikheid, asook die oorhoofse wisselwerking, kan aanspreek. Nuwe bestuursmetodes word voortdurend ondersoek om die probleem van stedelike water en afloopwater maksimaal na te vors. Faktore wat die ingewikkeldheid van die probleem verder beïnvloed is die feit dat die vraag na die beskikbaarheid van en die omvang van bestaande waterbronne akkuraat voorspel moet word. Akkurate voorspelling het sy eie probleme deurdat historiese data nie geredelik beskikbaar is nie. Die historiese akkuraatheid van waterdata is ook nie betroubaar nie. ’n Verdere probleem is dat die impak van klimaatsverandering verdamping en reënval uiters nadelig beïnvloed. Die tekortkominge van huidige metodes en tegnieke het aanleiding gegee dat datagedrewe tegnieke en simulasie toenemend gebruik word. Die “machine learning model” is die metode wat huidiglik toenemend gebruik word. Die hoof doelwit van hierdie studie was om ’n masjiengedrewe simulasie te ontwerp, die implementering daarvan te toets, gebruikers te leer hoe dit werk, en sodanig waterbestuursprobleme te kan hanteer en oplossings te bied om wetgewing, regulasies, en beleidsvoorskrifte in werking te stel. Die transdissiplinêre metodologiese benadering is as die oorhoofse navorsingsmetodologie gebruik omdat dit die navorser die ruimte gebied het om verskillende dissiplines se wetenskapsbenaderings bymekaar te bring. Die metodiek is aangevul deur ’n kritiese literatuuroorsig, interaktiewe bestuursimulasie, en ’n gevallestudie. Die gemengde-metodes ondersoekende opvolgende navorsingsontwerp is in twee fases aangewend. Dit is eerstens toegepas op Stellenbosch Plaaslike Munisipaliteit as die gevallestudie waar stedelike wateraanvraag as die eenheid van ontleding gebruik is. Die eerste fase het bestaan uit die versameling van data deur ’n “soft management systems” interaktiewe proses met voorafgekeurde spesialiste en gemeenskapsverteenwoordigers. Die kwalitatiewe data was versamel en verwerk deur gebruik te maak van Concept Star se besluitnemingsinstrumente. Die tweede fase het bestaan uit tradisionele kwalitatiewe dataversameling. Beide die tydreeks- en die “machine learning” prosesse was ontwerp vir die voorspelling van afloopwater van Stellenbosch Munisipale Werke. Kwalitatiewe studies van die faktore wat inhiberend inwerk op die hersirkulering van stedelike afloopwater het getoon dat sosiale faktore negatief inwerk op die hergebruik van afloopwater. Ander faktore wat aangedui was, was gebrekkige wetgewing en ’n gebrek aan beleidsvoorskrifte en standaarde. Die inhiberende faktore word veroorsaak deur menslike persepsies rakende die implementering van werkbare alternatiewe waterbronne. Verdere studies het aangetoon dat ’n nie-lineêre tendens waarneembaar is tussen totale water verbruik en die toename in bevolkingsgetalle en huishoudings. Hierdie bevinding is teenstrydig met die algemene verwagting en normatiewe gebruik. Vir die voorlopige data-ontleding van die onttrekking van rivierwater was “run-of-river abstraction” gestel as die afhanklike veranderlike in die moduleringsproses. Die volgende modelle was ontwikkel: die tradisionele Autoregressive Integrated Moving Average en die Seasonal Autoregressive Integrated Moving Average modelle, asook die “machine learning model”; dus AdaBoost, Gradient Boosting en Stochastic Boosting, Random Forest, en Artificial Neural Networks. Die model met die beste resultate was Random Forest, gevolg deur Stochastic Gradient Boosting. Die navorser beveel beide hierdie modelle aan. Die toepassing van die transdissiplinêre navorsingsmetodologie is ’n unieke kombinasie en toevoeging tot waterbestuursnavorsing. Voorts help die studie om die belangrikheid van ’n mensgedrewe ontwerpbenadering en die gebruik van datagesentreerde “machine learning” tegnieke in waterbestuursnavorsing as die eerste opsie te oorweeg. Die oorhoofse transdissiplinêre metodiek, ’n mensgesentreerde ontwerp, en die “machine learning” werktuig is volgens die navorser die beste kombinasie van ’n wetenskapsgeoriënteerde “gereedskapskis” om waterbestuursprobleme te ondersoek.
AFRIKAANSE OPSOMMING: Die bewaring van varswaterbronne en die herontdekking van nuwe bronne is wêreldwyd ’n wetenskaplike probleem van groot belang. Daarbenewens het die bestuur van veral stedelike afloopwater in ingewikkeldheid toegeneem. Navorsers wat die probleem bestudeer het, het tot die gevolgtrekking gekom dat daar ’n oorsaaklike verband bestaan tussen die voortdurende toename in die wêreldbevolking, verstedeliking, die negatiewe uitwerking van klimaatsverandering en die sikliese verband met reënval, en die afname en besoedeling van stedelike waterbronne. Die ingewikkeldheid van die probleem word verder vermeerder deur die wisselwerking tussen mens en natuur. Dit is duidelik dat die wisselwerking tussen bogemelde faktore die bestuur van stedelike waterbronne ’n uitdagende taak maak. Dit is voor die hand liggend dat ’n oorhoofse en geïntegreerde bestuursbenadering noodsaaklik is wat sowel die onderlinge interafhanklikheid, asook die oorhoofse wisselwerking, kan aanspreek. Nuwe bestuursmetodes word voortdurend ondersoek om die probleem van stedelike water en afloopwater maksimaal na te vors. Faktore wat die ingewikkeldheid van die probleem verder beïnvloed is die feit dat die vraag na die beskikbaarheid van en die omvang van bestaande waterbronne akkuraat voorspel moet word. Akkurate voorspelling het sy eie probleme deurdat historiese data nie geredelik beskikbaar is nie. Die historiese akkuraatheid van waterdata is ook nie betroubaar nie. ’n Verdere probleem is dat die impak van klimaatsverandering verdamping en reënval uiters nadelig beïnvloed. Die tekortkominge van huidige metodes en tegnieke het aanleiding gegee dat datagedrewe tegnieke en simulasie toenemend gebruik word. Die “machine learning model” is die metode wat huidiglik toenemend gebruik word. Die hoof doelwit van hierdie studie was om ’n masjiengedrewe simulasie te ontwerp, die implementering daarvan te toets, gebruikers te leer hoe dit werk, en sodanig waterbestuursprobleme te kan hanteer en oplossings te bied om wetgewing, regulasies, en beleidsvoorskrifte in werking te stel. Die transdissiplinêre metodologiese benadering is as die oorhoofse navorsingsmetodologie gebruik omdat dit die navorser die ruimte gebied het om verskillende dissiplines se wetenskapsbenaderings bymekaar te bring. Die metodiek is aangevul deur ’n kritiese literatuuroorsig, interaktiewe bestuursimulasie, en ’n gevallestudie. Die gemengde-metodes ondersoekende opvolgende navorsingsontwerp is in twee fases aangewend. Dit is eerstens toegepas op Stellenbosch Plaaslike Munisipaliteit as die gevallestudie waar stedelike wateraanvraag as die eenheid van ontleding gebruik is. Die eerste fase het bestaan uit die versameling van data deur ’n “soft management systems” interaktiewe proses met voorafgekeurde spesialiste en gemeenskapsverteenwoordigers. Die kwalitatiewe data was versamel en verwerk deur gebruik te maak van Concept Star se besluitnemingsinstrumente. Die tweede fase het bestaan uit tradisionele kwalitatiewe dataversameling. Beide die tydreeks- en die “machine learning” prosesse was ontwerp vir die voorspelling van afloopwater van Stellenbosch Munisipale Werke. Kwalitatiewe studies van die faktore wat inhiberend inwerk op die hersirkulering van stedelike afloopwater het getoon dat sosiale faktore negatief inwerk op die hergebruik van afloopwater. Ander faktore wat aangedui was, was gebrekkige wetgewing en ’n gebrek aan beleidsvoorskrifte en standaarde. Die inhiberende faktore word veroorsaak deur menslike persepsies rakende die implementering van werkbare alternatiewe waterbronne. Verdere studies het aangetoon dat ’n nie-lineêre tendens waarneembaar is tussen totale water verbruik en die toename in bevolkingsgetalle en huishoudings. Hierdie bevinding is teenstrydig met die algemene verwagting en normatiewe gebruik. Vir die voorlopige data-ontleding van die onttrekking van rivierwater was “run-of-river abstraction” gestel as die afhanklike veranderlike in die moduleringsproses. Die volgende modelle was ontwikkel: die tradisionele Autoregressive Integrated Moving Average en die Seasonal Autoregressive Integrated Moving Average modelle, asook die “machine learning model”; dus AdaBoost, Gradient Boosting en Stochastic Boosting, Random Forest, en Artificial Neural Networks. Die model met die beste resultate was Random Forest, gevolg deur Stochastic Gradient Boosting. Die navorser beveel beide hierdie modelle aan. Die toepassing van die transdissiplinêre navorsingsmetodologie is ’n unieke kombinasie en toevoeging tot waterbestuursnavorsing. Voorts help die studie om die belangrikheid van ’n mensgedrewe ontwerpbenadering en die gebruik van datagesentreerde “machine learning” tegnieke in waterbestuursnavorsing as die eerste opsie te oorweeg. Die oorhoofse transdissiplinêre metodiek, ’n mensgesentreerde ontwerp, en die “machine learning” werktuig is volgens die navorser die beste kombinasie van ’n wetenskapsgeoriënteerde “gereedskapskis” om waterbestuursprobleme te ondersoek.
Description
Thesis (DPhil)--Stellenbosch University, 2023.