The existence of planar hypotraceable oriented graphs

dc.contributor.authorVan Aardt, Susan A.en_ZA
dc.contributor.authorBurger, Alewyn Petrusen_ZA
dc.contributor.authorFrick, Marietjieen_ZA
dc.date.accessioned2019-01-25T12:21:56Z
dc.date.available2019-01-25T12:21:56Z
dc.date.issued2017
dc.descriptionCITATION: Van Aardt, S. A., Burger, A. P. & Frick, M. 2017. The existence of planar hypotraceable oriented graphs. Discrete Mathematics and Theoretical Computer Science, 19(1):1-10, doi:10.23638/DMTCS-19-1-4.
dc.descriptionThe original publication is available at https://dmtcs.episciences.org
dc.description.abstractA digraph is \emph{traceable} if it has a path that visits every vertex. A digraph D is \emph{hypotraceable} if D is not traceable but D−v is traceable for every vertex v∈V(D). It is known that there exists a planar hypotraceable digraph of order n for every n≥7, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order n for every even n≥10, with the possible exception of n=14.en_ZA
dc.description.urihttps://dmtcs.episciences.org/3149
dc.description.versionPublisher's version
dc.format.extent10 pages ; illustrations
dc.identifier.citationVan Aardt, S. A., Burger, A. P. & Frick, M. 2017. The existence of planar hypotraceable oriented graphs. Discrete Mathematics and Theoretical Computer Science, 19(1):1-10, doi:10.23638/DMTCS-19-1-4
dc.identifier.issn1365-8050 (online)
dc.identifier.issn1462-7264 (print)
dc.identifier.otherdoi:10.23638/DMTCS-19-1-4
dc.identifier.urihttp://hdl.handle.net/10019.1/105362
dc.language.isoen_ZAen_ZA
dc.publisherDiscrete Mathematics & amp; Theoretical Computer Science
dc.rights.holderAuthors retain copyright
dc.subjectHypotraceable digraphsen_ZA
dc.subjectDirected graphsen_ZA
dc.titleThe existence of planar hypotraceable oriented graphsen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vanaardt_existence_2017.pdf
Size:
415.81 KB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: