Using machine learning to predict the next purchase date for an individual retail customer

dc.contributor.authorDroomer, Marlien_ZA
dc.contributor.authorBekker, Jamesen_ZA
dc.date.accessioned2020-11-12T13:41:43Z
dc.date.available2020-11-12T13:41:43Z
dc.date.issued2020-11-11
dc.descriptionCITATION: Droomer, M. & Bekker, J. 2020. Using machine learning to predict the next purchase date for an individual retail customer. South African Journal of Industrial Engineering, 31(3):69-82, doi:10.7166/31-3-2419.
dc.descriptionThe original publication is available at http://sajie.journals.ac.za
dc.description.abstractENGLISH ABSTRACT: Targeted marketing has become more popular over the last few years, and knowing when a customer will require a product can be of enormous value to a company. However, predicting this is a difficult task. This paper reports on a study that investigates predicting when a customer will buy fast-moving retail products, by using machine learning techniques. This is done by analysing the purchase history of a customer at participating retailers. These predictions will be used to personalise discount offers to customers when they are about to purchase items. Such offers will be delivered on the mobile devices of participating customers and, ultimately, physical, general paper-based marketing will be reduced.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING:Teiken-bemarking het in die laaste jare gewild geword en dit kan baie waardevol wees vir ʼn onderneming om te weet wanneer ʼn kliënt ʼn produk benodig. Hierdie soort voorspelling is egter baie moeilik, en hierdie artikel beskryf ʼn studie wat met behulp van masjienleer-tegnieke ondersoek het wanneer ʼn kliënt vinnig-bewegende kleinhandel produkte sal koop. Dit is gedoen deur die koopgeskiedenis van ʼn kliënt by deelnemende kleinhandelaars te ontleed. Hierdie voorspellings sal gebruik word om persoonlike afslagaanbiedinge aan kliënte te maak wanneer hulle produkte wil koop. Hierdie aanbiedinge sal op deelnemende kliënte se mobiele toestelle aangebied word en uiteindelik sal veralgemeende, papier-gebaseerde bemarking verminder word.af_ZA
dc.description.urihttp://sajie.journals.ac.za/pub/article/view/2419
dc.description.versionPublisher's version
dc.format.extent15 pages : illustrationsen_ZA
dc.identifier.citationDroomer, M. & Bekker, J. 2020. Using machine learning to predict the next purchase date for an individual retail customer. South African Journal of Industrial Engineering, 31(3):69-82, doi:10.7166/31-3-2419
dc.identifier.issn2224-7890 (online)
dc.identifier.issn1012-277X (print)
dc.identifier.otherdoi:10.7166/31-3-2419
dc.identifier.urihttp://hdl.handle.net/10019.1/108929
dc.language.isoen_ZAen_ZA
dc.publisherSouthern African Institute for Industrial Engineeringen_ZA
dc.rights.holderAuthors retain copyrighten_ZA
dc.subjectMarketingen_ZA
dc.subjectMachine learningen_ZA
dc.subjectRetail marketingen_ZA
dc.titleUsing machine learning to predict the next purchase date for an individual retail customeren_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
droomer_machine_2020.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: