Stochastic gradient annealed importance sampling for efficient online marginal likelihood estimation

dc.contributor.authorCameron, Scott A.en_ZA
dc.contributor.authorEggers, Hans C.en_ZA
dc.contributor.authorKroon, Steveen_ZA
dc.date.accessioned2021-09-08T10:05:57Z
dc.date.available2021-09-08T10:05:57Z
dc.date.issued2019-11-12
dc.descriptionCITATION: Cameron, S. A.; Eggers, H. C. & Kroon, S. 2019. Stochastic gradient annealed importance sampling for efficient online marginal likelihood estimation. Entropy, 21(11). doi:10.3390/e21111109
dc.descriptionThe original publication is available at https://www.mdpi.com/journal/entropy
dc.description.abstractWe consider estimating the marginal likelihood in settings with independent and identically distributed (i.i.d.) data. We propose estimating the predictive distributions in a sequential factorization of the marginal likelihood in such settings by using stochastic gradient Markov Chain Monte Carlo techniques. This approach is far more efficient than traditional marginal likelihood estimation techniques such as nested sampling and annealed importance sampling due to its use of mini-batches to approximate the likelihood. Stability of the estimates is provided by an adaptive annealing schedule. The resulting stochastic gradient annealed importance sampling (SGAIS) technique, which is the key contribution of our paper, enables us to estimate the marginal likelihood of a number of models considerably faster than traditional approaches, with no noticeable loss of accuracy. An important benefit of our approach is that the marginal likelihood is calculated in an online fashion as data becomes available, allowing the estimates to be used for applications such as online weighted model combination.en_ZA
dc.description.urihttps://www.mdpi.com/1099-4300/21/11/1109/htm
dc.description.versionPublisher’s version
dc.format.extent18 pages
dc.identifier.citationCameron, S. A.; Eggers, H. C. & Kroon, S. 2019. Stochastic gradient annealed importance sampling for efficient online marginal likelihood estimation. Entropy, 21(11). doi:10.3390/e21111109
dc.identifier.issn1099-4300 (online)
dc.identifier.otherdoi:10.3390/e21111109
dc.identifier.urihttp://hdl.handle.net/10019.1/123009
dc.language.isoen_ZAen_ZA
dc.publisherMDPI
dc.rights.holderAuthors retain rights
dc.subjectMarginal distributionsen_ZA
dc.subjectEstimation theoryen_ZA
dc.subjectNested samplingen_ZA
dc.subjectAnnealed importance samplingen_ZA
dc.subjectMonte Carlo methoden_ZA
dc.subjectSimulated annealing (Mathematics)en_ZA
dc.subjectConjugate gradient methodsen_ZA
dc.titleStochastic gradient annealed importance sampling for efficient online marginal likelihood estimationen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cameron_stochastic_2019.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: