Phase Change Material and Recycled Brick Aggregate in Thermal Energy Storage 3D Printed Concrete

dc.contributor.advisorVan Zijl, Gideon P. A. G.en_ZA
dc.contributor.advisorDe Villiers, Wibkeen_ZA
dc.contributor.authorChristen, Heidien_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Department of Civil Engineering.en_ZA
dc.date.accessioned2022-11-21T16:41:06Zen_ZA
dc.date.accessioned2023-01-16T12:53:43Zen_ZA
dc.date.available2022-11-21T16:41:06Zen_ZA
dc.date.available2023-01-16T12:53:43Zen_ZA
dc.date.issued2022-12en_ZA
dc.descriptionThesis (PhD) -- Stellenbosch University, 2022.en_ZA
dc.description.abstractENGLISH ABSTRACT: The building sector accounts for the highest share of anthropogenic greenhouse gas emissions from electricity and heat production, mostly due to the high energy requirement of heating, ventilation, and air conditioning systems in buildings. Passive design solutions are gaining popularity as a means to reduce the energy requirement of buildings while still providing thermal comfort in buildings. 3D printed concrete represents the next phase of automation in the construction industry with potential to allow for more complex structural geometries, with higher labour productivity, lower energy requirements, reduced waste, and a positive resulting impact on the environment. This research combines a thermal energy storage passive design solution in the form of phase change material, with 3D printed concrete, using recycled brick aggregate as a vessel for the phase change material in the concrete. This research therefore analyses a novel material with aspects of energy saving, automation and recycling. This research is original in its characterisation of a 3D printable concrete containing recycled brick aggregate, and its investigation of leakage of phase change material from recycled brick aggregate in 3D printed concrete. Two mix designs are developed, the first replacing a large portion of the natural aggregate in a 3D printed concrete mix with recycled brick aggregate, and the second adding phase change material to the pores of the recycled brick aggregate to create phase change material 3D printed concrete. Rheological and mechanical characterisations are performed on both developed mixes and compared to a reference 3D printed concrete mix. Mass-loss tests, scanning electron microscopy analysis and 90-day strength tests are used to analyse the internal and external phase change material leakage. Two façade sections are printed with the two mix designs and used in thermal tests to analyse the effectiveness of the chosen phase change material in the façade geometry during different months of early spring to late summer in Stellenbosch, South Africa. The effectiveness of the phase change material after several months of exposure to outdoor ambient conditions proved a successful vacuum impregnation technique of phase change material in recycled brick aggregate. A model of the phase change material 3D printed façade section was created in ABAQUS and validated by the experimental thermal tests, with the material thermal properties being determined by a sensitivity study. The validated model was used to determine two phase change material melting temperatures which could potentially be incorporated into the façade section for saving both cooling and heating energy in summer and winter respectively, due to their activation at separate temperature ranges.en_ZA
dc.description.abstractAFRIKAANS OPSOMMING: Die bousektor is verantwoordelik vir die grootste deel van antropogeniese kweekhuisgasvrystellings vanaf elektrisiteit en hitteproduksie, meestal as gevolg van die hoë energiebehoefte van verwarming, ventilasie en lugversorgingstelsels in geboue. Passiewe ontwerpoplossings word gewild as 'n manier om die energiebehoefte van geboue te verminder terwyl dit steeds termiese gerief in geboue bied. 3D gedrukte beton verteenwoordig die volgende fase van outomatisering in die konstruksiebedryf met potensiaal om voorsiening te maak vir meer komplekse strukturele geometrieë, met hoër arbeider produktiwiteit, laer energievereistes, verminderde vermorsing en 'n positiewe gevolglike impak op die omgewing. Hierdie navorsing kombineer 'n passiewe ontwerpoplossing vir termiese energieberging in die vorm van faseveranderingsmateriaal, met 3D-gedrukte beton, wat herwinde baksteenaggregaat gebruik as 'n houer vir die faseveranderingsmateriaal in die beton. Hierdie navorsing ontleed dus 'n nuwe materiaal met aspekte van energiebesparing, outomatisering en herwinning. Hierdie navorsing is oorspronklik in sy karakterisering van 'n 3D-drukbare beton wat herwinde baksteenaggregaat bevat, en sy ondersoek na lekkasie van faseveranderingsmateriaal vanaf herwinde baksteenaggregaat in 3D-gedrukte beton. Twee mengontwerpe word ontwikkel, die eerste vervang 'n groot gedeelte van die natuurlike aggregaat in 'n 3D-gedrukte betonmeng met herwonne baksteenaggregaat, en die tweede voeg faseveranderingsmateriaal by die porieë van die herwonne baksteenaggregaat om faseveranderingsmateriaal 3D-gedrukte beton te skep. Reologiese en meganiese karakteriserings word uitgevoer op beide ontwikkelde menge en vergelyk met 'n verwysing 3D gedrukte betonmeng. Massaverliestoetse, skandeerelektronmikroskopie-analise en 90-dae sterktetoetse word gebruik om die interne en eksterne faseveranderingsmateriaallekkasie te ontleed. Twee fasadegedeeltes word met die twee mengontwerpe gedruk en in termiese toetse gebruik om die doeltreffendheid van die gekose faseveranderingsmateriaal in die fasadegeometrie gedurende verskillende maande van vroeë lente tot laat somer in Stellenbosch, Suid-Afrika, te ontleed. Die doeltreffendheid van die faseveranderingsmateriaal na etlike maande se blootstelling aan buitelug omgewingstoestande het 'n suksesvolle vakuum-impregneringstegniek van faseveranderingsmateriaal in herwonne baksteenaggregaat bewys. 'n Model van die faseveranderingsmateriaal 3D-gedrukte fasadegedeelte is in ABAQUS geskep en deur die eksperimentele termiese toetse bekragtig, met die materiaal se termiese eienskappe wat deur 'n sensitiwiteitstudie bepaal word. Die gevalideerde model is gebruik om twee faseverandering materiaal smelttemperature te bepaal wat moontlik in die fasade gedeelte geïnkorporeer kan word om beide verkoelings- en verhittingsenergie in die somer en winter onderskeidelik te bespaar, as gevolg van hul aktivering by afsonderlike temperatuurreekse.af_ZA
dc.description.versionDoctoralen_ZA
dc.format.extentxix, 157 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/126171en_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectAggregate industryen_ZA
dc.subjectGreen productsen_ZA
dc.subjectHeat storageen_ZA
dc.subjectSustainable buildingsen_ZA
dc.subjectThermal comforten_ZA
dc.subjectFacadesen_ZA
dc.subjectComputer simulationen_ZA
dc.subjectPhase change materialen_ZA
dc.subjectThree-dimensional printingen_ZA
dc.titlePhase Change Material and Recycled Brick Aggregate in Thermal Energy Storage 3D Printed Concreteen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
christen_phase_2022.pdf
Size:
8.42 MB
Format:
Adobe Portable Document Format
Description: