The effect of hydrogen bonding on foldamer self-assembly
Date
2023-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Foldamers are chain molecules (oligomer or polymers) that fold into a conformationally ordered state when in solution. These polymers have been shown to have applications in host-guest chemistry, catalysis, and show great promise as responsive gel polymers. In previous literature, a large para-aryl triazole foldamer system with a diameter of 30 Å was developed and studied by Klumperman and co-workers. The foldamer’s superhelical structures (helixes made of helixes) were shown to be unstable. Where the structures would collapse (forming spherical objects made of secondary structure helixes) at high percentage solvent compositions of the selective solvent (water) in the non-selective solvent (Dimethylformamide, (DMF)). This was hypothesized to have occurred because of the polymer being poorly solubilized in solution. A library of polymers with varying amounts of hydrogen bond acceptors incorporated within the monomeric units was therefore synthesized and successfully characterized. The properties of the said library of polymers were then investigated via DLS (dynamic light scattering), LD (linear dichroism), CD (circular dichroism), and UV/Vis spectroscopy (ultraviolet-visible light spectroscopy). It was determined that the polymers with hydrogen bonding moieties incorporated within the monomeric units, would not fold with a change in solvent composition, instead, the polymers would form a conglomerated mass of polymer chains. This may be a result of two factors; firstly, although the hydrogen bonding was expected to increase the stabilization of the helical structure (simulated via molecular dynamic calculations), the amount of hydrogen bonding groups incorporated within the polymers could be too great and inhibited the polymers’ ability to fold. Secondly, the polymers may have not folded as the molecular weights of the polymers may have not been sufficiently large enough to induce folding (polymer length would need to be 42 kDa). To confirm this hypothesis, ultrapure monomers would need to be synthesized (according to a new synthetic procedure) and a new polymerization methodology would need to be developed for the hydrogen bonding containing monomers to ensure higher molecular weights are easily achieved. In the future, it would be ideal to investigate other streamlined methods to achieve the synthesis of the polymeric systems developed in this thesis, this would enable for the effective investigation of the properties of this system without having such synthetic hurdles as was encountered in this work. For example, the development of a triphenylphosphine-free methodology for a Sonagashira-Hagihara coupling reaction. It would also be ideal to develop another method of polymerization for the hydrogen bond-containing systems as the current polymerization technique may have not yielded polymer with high enough molecular weights to confirm that low molecular weights of the polymer systems were inhibiting the folding process. In addition, it would be ideal to develop another methodology to acquire ultrapure monomer as this is a step growth polymerization and any impurities would drastically impact the molecular weight acquired.
AFRIKAANS OPSOMMMING: Voudamers is kettingmolekules (oligomeer of polimere) wat in 'n konformasie-geordende toestand vou wanneer dit in oplossing is. Daar is getoon dat hierdie polimere toepassings het in gasheer-gas chemie, katalise, en toon groot belofte as responsiewe gel polimere. In vorige literatuur is 'n groot para-ariel triasool voudamer sisteem met 'n deursnee van 30 Å ontwikkel en bestudeer deur Klumperman en medewerkers. Die voudamer se superheliese strukture (helikse gemaak van helikse) is as onstabiel getoon. Waar die strukture sou ineenstort (wat sferiese voorwerpe gemaak van sekondêre struktuurhelikse vorm) by hoë persentasie oplosmiddelsamestellings van die selektiewe oplosmiddel (water) in die nie-selektiewe oplosmiddel (Dimetielformamied, (DMF)). Dit is vermoedelik plaasgevind as gevolg van die polimeer wat swak opgelos is in oplossing. 'n Biblioteek van polimere met wisselende hoeveelhede waterstofbinding-aannemers wat binne die monomeriese eenhede geïnkorporeer is, is dus gesintetiseer en suksesvol gekarakteriseer. Die eienskappe van die genoemde biblioteek van polimere is daarna deur middel van DLS (dinamiese ligverstrooiing), LD (lineêre dichroïsme), CD (sirkulêre dichroïsme) en UV/Vis-spektroskopie (ultraviolet-sigbare ligspektroskopie) ondersoek. Daar is vasgestel dat die polimere met waterstofbindingsdele wat binne die monomeriese eenhede geïnkorporeer is, nie sou vou met 'n verandering in oplosmiddelsamestelling nie, eerder sou die polimere 'n geglomereerde massa polimeerkettings vorm. Dit kan die gevolg wees van twee faktore; eerstens, alhoewel die waterstofbinding na verwagting die stabilisering van die heliese struktuur sou verhoog (gesimuleer via molekulêre dinamiese berekeninge), kon die hoeveelheid waterstofbindingsgroepe wat binne die polimere geïnkorporeer is te groot wees en die polimere se vermoë om te vou belemmer. Tweedens het die polimere dalk nie gevou nie aangesien die molekulêre gewigte van die polimere dalk nie groot genoeg was om vou te veroorsaak nie (polimeerlengte sal 42 kDa moet wees). Om hierdie hipotese te bevestig, sal ultrasuiwer monomere gesintetiseer moet word (volgens 'n nuwe sintetiese prosedure) en 'n nuwe polimerisasiemetodologie sal ontwikkel moet word vir die waterstofbinding-bevattende monomere om te verseker dat hoër molekulêre gewigte maklik bereik word. In die toekoms sal dit ideaal wees om ander vaartbelynde metodes te ondersoek om die sintese van die polimeriese sisteme wat in hierdie tesis ontwikkel is te bereik, dit sal die effektiewe ondersoek van die eienskappe van hierdie sisteem moontlik maak sonder om sulke sintetiese hindernisse te hê as wat in hierdie werk teëgekom is. . Byvoorbeeld, die ontwikkeling van 'n trifenylfosfienvrye metodologie vir 'n Sonagashira-Hagihara-koppelreaksie. Dit sal ook ideaal wees om 'n ander metode van polimerisasie vir die waterstofbinding-bevattende sisteme te ontwikkel aangesien die huidige polimerisasietegniek moontlik nie polimeer met hoog genoeg molekulêre gewigte opgelewer het om te bevestig dat lae molekulêre gewigte van die polimeerstelsels die vouproses inhibeer nie. Daarbenewens sal dit ideal wees om 'n ander metodologie te ontwikkel om ultrasuiwer monomeer te verkry, aangesien dit 'n stapgroeipolimerisasie is en enige onsuiwerhede die molekulêre gewig wat verkry word, drasties sal beïnvloed.
AFRIKAANS OPSOMMMING: Voudamers is kettingmolekules (oligomeer of polimere) wat in 'n konformasie-geordende toestand vou wanneer dit in oplossing is. Daar is getoon dat hierdie polimere toepassings het in gasheer-gas chemie, katalise, en toon groot belofte as responsiewe gel polimere. In vorige literatuur is 'n groot para-ariel triasool voudamer sisteem met 'n deursnee van 30 Å ontwikkel en bestudeer deur Klumperman en medewerkers. Die voudamer se superheliese strukture (helikse gemaak van helikse) is as onstabiel getoon. Waar die strukture sou ineenstort (wat sferiese voorwerpe gemaak van sekondêre struktuurhelikse vorm) by hoë persentasie oplosmiddelsamestellings van die selektiewe oplosmiddel (water) in die nie-selektiewe oplosmiddel (Dimetielformamied, (DMF)). Dit is vermoedelik plaasgevind as gevolg van die polimeer wat swak opgelos is in oplossing. 'n Biblioteek van polimere met wisselende hoeveelhede waterstofbinding-aannemers wat binne die monomeriese eenhede geïnkorporeer is, is dus gesintetiseer en suksesvol gekarakteriseer. Die eienskappe van die genoemde biblioteek van polimere is daarna deur middel van DLS (dinamiese ligverstrooiing), LD (lineêre dichroïsme), CD (sirkulêre dichroïsme) en UV/Vis-spektroskopie (ultraviolet-sigbare ligspektroskopie) ondersoek. Daar is vasgestel dat die polimere met waterstofbindingsdele wat binne die monomeriese eenhede geïnkorporeer is, nie sou vou met 'n verandering in oplosmiddelsamestelling nie, eerder sou die polimere 'n geglomereerde massa polimeerkettings vorm. Dit kan die gevolg wees van twee faktore; eerstens, alhoewel die waterstofbinding na verwagting die stabilisering van die heliese struktuur sou verhoog (gesimuleer via molekulêre dinamiese berekeninge), kon die hoeveelheid waterstofbindingsgroepe wat binne die polimere geïnkorporeer is te groot wees en die polimere se vermoë om te vou belemmer. Tweedens het die polimere dalk nie gevou nie aangesien die molekulêre gewigte van die polimere dalk nie groot genoeg was om vou te veroorsaak nie (polimeerlengte sal 42 kDa moet wees). Om hierdie hipotese te bevestig, sal ultrasuiwer monomere gesintetiseer moet word (volgens 'n nuwe sintetiese prosedure) en 'n nuwe polimerisasiemetodologie sal ontwikkel moet word vir die waterstofbinding-bevattende monomere om te verseker dat hoër molekulêre gewigte maklik bereik word. In die toekoms sal dit ideaal wees om ander vaartbelynde metodes te ondersoek om die sintese van die polimeriese sisteme wat in hierdie tesis ontwikkel is te bereik, dit sal die effektiewe ondersoek van die eienskappe van hierdie sisteem moontlik maak sonder om sulke sintetiese hindernisse te hê as wat in hierdie werk teëgekom is. . Byvoorbeeld, die ontwikkeling van 'n trifenylfosfienvrye metodologie vir 'n Sonagashira-Hagihara-koppelreaksie. Dit sal ook ideaal wees om 'n ander metode van polimerisasie vir die waterstofbinding-bevattende sisteme te ontwikkel aangesien die huidige polimerisasietegniek moontlik nie polimeer met hoog genoeg molekulêre gewigte opgelewer het om te bevestig dat lae molekulêre gewigte van die polimeerstelsels die vouproses inhibeer nie. Daarbenewens sal dit ideal wees om 'n ander metodologie te ontwikkel om ultrasuiwer monomeer te verkry, aangesien dit 'n stapgroeipolimerisasie is en enige onsuiwerhede die molekulêre gewig wat verkry word, drasties sal beïnvloed.
Description
Thesis (MSc)--Stellenbosch University, 2023.