Molecular weight effects on crystallization of polypropylene
Date
2011-03
Authors
Amer, Ismael
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : University of Stellenbosch
Abstract
ENGLISH ABSTRACT: The crystallization of polyolefins is an important parameter in determining the properties of
such materials. The crystallization phenomenon generally depends on the molecular
symmetry (tacticity) and molecular weight of the material. In this study, a series of
polypropylenes was prepared using heterogeneous MgCl2-supported Ziegler catalysts with
two different external donors, diphenyldimethoxysilane (DPDMS) and methyl-phenyldimethoxysilane
(MPDMS), and two different homogeneous metallocene catalysts, racethylene-
bis(indenyl) zirconium dichloride, Et(Ind)2ZrCl2 (EI), and rac-ethylene-bis(4,5,6,7-
tetrahydro-1-indenyl) zirconium dichloride, Et(H4Ind)2ZrCl2 (EI(4H)). Molecular hydrogen
was used as terminating agent.
In order to establish a correlation between the molecular weight and the crystallization of
these polymers, fractionation of the materials according to crystallizability was performed by
means of temperature rising elution fractionation (TREF). This affords the opportunity of
blending materials of different molecular weights but similar symmetry.
These materials were characterized using various analytical techniques: differential scanning
calorimetry (DSC), wide-angle X-ray diffraction (WAXD), 13C nuclear magnetic resonance
spectroscopy (13C-NMR), high temperature gel permeation chromatography (HT-GPC) and
Fourier-transform infrared spectroscopy (FT-IR).
DSC was used to study the bulk crystallization of different polypropylene blends, most of
which showed only one melting peak. The latter is usually associated with a high degree of
cocrystallization. Turbidity analysis of the different polypropylene polymers, obtained using
solution crystallization analysis by laser light scattering (SCALLS), provided good
crystallization information – similar to that provided by crystallization analysis fractionation
(CRYSTAF) and TREF. It was also possible to differentiate between polypropylenes with
similar chemical structure but different tacticity and molecular weight. SCALLS results also
showed that the blends of different isotactic polypropylene polymers were miscible and
cocrystallization had occurred, whereas, the blends of syndiotactic polypropylene and
different isotactic polypropylenes were not miscible and some interaction between phases had
occurred.
Optical microcopy (OM) and scanning electronic microscopy (SEM) were used to study the
morphological properties of different isotactic polypropylenes. Results revealed a welldefined
and large spherulitic morphology of mixed a1 (disordered) and a2 (ordered) crystal
form structures. OM and SEM images also clearly showed an effect of molecular weight and
tacticity on the crystal structure of the different polypropylene samples.
Finally, various homopolymers and blends were studied to investigate the effect of molecular
weight on the mechanical properties of these materials. This was done using microhardness
testing and dynamic mechanical analysis.
AFRIKAANSE OPSOMMING: Die kristallisasie van poliolefiene is ‘n belangrike faktor wat die eienskappe van hierdie tipe materiale bepaal. In die algemeen hang kristallisasie af van die molekulêre simmetrie (taktisiteit) en molekulêre massa van die materiaal. ‘n Reeks polipropilene is berei deur gebruik te maak van heterogene MgCl2-ondersteunde Ziegler-kataliste met twee verskillende elektron donors, difenieldimetoksisilaan (DPDMS) en metielfenieldimetoksisilaan (MPDMS), en twee verskillende homogene metalloseenkataliste, rac-etileen-bis(indeniel) sirkoniumdichloried, Et(Ind)2ZrCl2 (EI), en rac-etileen-bis(4,5,6,7-tetrahidro-1-indeniel) sirkoniumdichloried, Et(H4Ind)2ZrCl2 (EI(4H)). Molekulêre waterstof is gebruik as termineringssagent. Ten einde ‘n verband te bepaal tussen die molekulêre massa en kristallisasie van hierdie polimere is hulle gefraksioneer op die basis van hulle kristallisseerbaarheid deur gebruik te maak van temperatuurstyging-elueringsfraksionering (TREF). Deur hierdie tegniek verkry ons materiale van verskillende molekulêre massa maar met dieselfde taktisiteit wat ons kan vermeng. Verskeie tegnieke is gebruik om hierdie materiale te karakteriseer: differensiële skandeerkalorometrie (DSC), wyehoek X-straal diffraksie (WAXS), 13C-kernmagnetiese resonansspektroskopie (13C-KMR), hoë-temperatuur gelpermeasiechromotagrafie (HT-GPC) en Fourier-transform-infrarooispektroskopie (FT-IR). DSC is gebruik om die vaste-toestand kristallisasie van verskeie vermengde polipropilene te bestudeer., en net een smeltpunt is in meeste gevalle waargeneem. Laasgenoemde word gewoonlik verbind met ‘n hoë mate van kokristallisasie. Oplossingkristallisasie analise, dmv laserligverstrooiing (SCALLS), is gebruik om die turbiditeit van die verskillende polipropileen kopolimeervermengings te bepaal. Goeie inligting aangaande die kristallisasie in oplossing – soortgelyk aan dié wat dmv die kristallisasie-analise-fraksioneringstegniek (CRYSTAF) en TREF bepaal is, is verkry. Dit was ook moontlik om te onderskei tussen polipropilene met soortgelyke chemiese strukture maar verskillende taktisiteit en molekulêre massas. SCALLS data het ook getoon dat die vermengings van verskeie isotaktiese polipropileen polimere versoenbaar was en dat kokristallisasie plaasgevind het, terwyl vermengings van sindiotaktiese polipropileen en verskeie isotaktiese polipropilene nie versoenbaar was nie en dat ‘n mate van fase-skeiding plaasgevind het. Optiese mikroskopie (OM) en skandeer-elektronmikroskopie (SEM) is gebruik om die morfologiese eienskappe van verskillende isotaktiese polipropilene te bepaal. Goed gedefineerde en groot sferulitiese morfologie van gemengde a1 (onordelike struktuur) en a2 (ordelike struktuur) kristal-strukture is waargeneem. OM en SEM beelde het ook gewys dat molekulêre massa en taktisiteit ‘n effek het op die kristalstruktuur van die verskillende polipropileenmonsters. Laastens is die meganiese eienskappe van ‘n verskeidenheid homopolimere en vermengde materiale bestudeer, deur gebruik te maak van mikro-hardheid metings en dinamiesmeganiese analise (DMA).
AFRIKAANSE OPSOMMING: Die kristallisasie van poliolefiene is ‘n belangrike faktor wat die eienskappe van hierdie tipe materiale bepaal. In die algemeen hang kristallisasie af van die molekulêre simmetrie (taktisiteit) en molekulêre massa van die materiaal. ‘n Reeks polipropilene is berei deur gebruik te maak van heterogene MgCl2-ondersteunde Ziegler-kataliste met twee verskillende elektron donors, difenieldimetoksisilaan (DPDMS) en metielfenieldimetoksisilaan (MPDMS), en twee verskillende homogene metalloseenkataliste, rac-etileen-bis(indeniel) sirkoniumdichloried, Et(Ind)2ZrCl2 (EI), en rac-etileen-bis(4,5,6,7-tetrahidro-1-indeniel) sirkoniumdichloried, Et(H4Ind)2ZrCl2 (EI(4H)). Molekulêre waterstof is gebruik as termineringssagent. Ten einde ‘n verband te bepaal tussen die molekulêre massa en kristallisasie van hierdie polimere is hulle gefraksioneer op die basis van hulle kristallisseerbaarheid deur gebruik te maak van temperatuurstyging-elueringsfraksionering (TREF). Deur hierdie tegniek verkry ons materiale van verskillende molekulêre massa maar met dieselfde taktisiteit wat ons kan vermeng. Verskeie tegnieke is gebruik om hierdie materiale te karakteriseer: differensiële skandeerkalorometrie (DSC), wyehoek X-straal diffraksie (WAXS), 13C-kernmagnetiese resonansspektroskopie (13C-KMR), hoë-temperatuur gelpermeasiechromotagrafie (HT-GPC) en Fourier-transform-infrarooispektroskopie (FT-IR). DSC is gebruik om die vaste-toestand kristallisasie van verskeie vermengde polipropilene te bestudeer., en net een smeltpunt is in meeste gevalle waargeneem. Laasgenoemde word gewoonlik verbind met ‘n hoë mate van kokristallisasie. Oplossingkristallisasie analise, dmv laserligverstrooiing (SCALLS), is gebruik om die turbiditeit van die verskillende polipropileen kopolimeervermengings te bepaal. Goeie inligting aangaande die kristallisasie in oplossing – soortgelyk aan dié wat dmv die kristallisasie-analise-fraksioneringstegniek (CRYSTAF) en TREF bepaal is, is verkry. Dit was ook moontlik om te onderskei tussen polipropilene met soortgelyke chemiese strukture maar verskillende taktisiteit en molekulêre massas. SCALLS data het ook getoon dat die vermengings van verskeie isotaktiese polipropileen polimere versoenbaar was en dat kokristallisasie plaasgevind het, terwyl vermengings van sindiotaktiese polipropileen en verskeie isotaktiese polipropilene nie versoenbaar was nie en dat ‘n mate van fase-skeiding plaasgevind het. Optiese mikroskopie (OM) en skandeer-elektronmikroskopie (SEM) is gebruik om die morfologiese eienskappe van verskillende isotaktiese polipropilene te bepaal. Goed gedefineerde en groot sferulitiese morfologie van gemengde a1 (onordelike struktuur) en a2 (ordelike struktuur) kristal-strukture is waargeneem. OM en SEM beelde het ook gewys dat molekulêre massa en taktisiteit ‘n effek het op die kristalstruktuur van die verskillende polipropileenmonsters. Laastens is die meganiese eienskappe van ‘n verskeidenheid homopolimere en vermengde materiale bestudeer, deur gebruik te maak van mikro-hardheid metings en dinamiesmeganiese analise (DMA).
Description
Thesis (PhD)--University of Stellenbosch, 2011.
Keywords
Polypropylene, Crystallization, Chrystalline polymers, Molecular weight, Dissertations -- Polymer science, Theses -- Polymer science