Non-parametric volatility measurements and volatility forecasting models

dc.contributor.advisorConradie, W. J.
dc.contributor.authorDu Toit, Cornel
dc.contributor.otherStellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.en_ZA
dc.date.accessioned2012-08-27T11:33:24Z
dc.date.available2012-08-27T11:33:24Z
dc.date.issued2005-03
dc.descriptionAssignment (MComm)--Stellenbosch University, 2005.en_ZA
dc.description.abstractENGLISH ABSTRACT: Volatilty was originally seen to be constant and deterministic, but it was later realised that return series are non-stationary. Owing to this non-stationarity nature of returns, there were no reliable ex-post volatility measurements. Subsequently, researchers focussed on ex-ante volatility models. It was only then realised that before good volatility models can be created, reliable ex-post volatility measuremetns need to be defined. In this study we examine non-parametric ex-post volatility measurements in order to obtain approximations of the variances of non-stationary return series. A detailed mathematical derivation and discussion of the already developed volatility measurements, in particular the realised volatility- and DST measurements, are given In theory, the higher the sample frequency of returns is, the more accurate the measurements are. These volatility measurements referred to above, however, all have short-comings in that the realised volatility fails if the sample frequency becomes to high owing to microstructure effects. On the other hand, the DST measurement cannot handle changing instantaneous volatility. In this study we introduce a new volatility measurement, termed microstructure realised volatility, that overcomes these shortcomings. This measurement, as with realised volatility, is based on quadratic variation theory, but the underlying return model is more realistic.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Volatiliteit is oorspronklik as konstant en deterministies beskou, dit was eers later dat besef is dat opbrengste nie-stasionêr is. Betroubare volatiliteits metings was nie beskikbaar nie weens die nie-stasionêre aard van opbrengste. Daarom het navorsers gefokus op vooruitskattingvolatiliteits modelle. Dit was eers op hierdie stadium dat navorsers besef het dat die definieering van betroubare volatiliteit metings 'n voorvereiste is vir die skepping van goeie vooruitskattings modelle. Nie-parametriese volatiliteit metings word in hierdie studie ondersoek om sodoende benaderings van die variansies van die nie-stasionêre opbrengste reeks te beraam. 'n Gedetaileerde wiskundige afleiding en bespreking van bestaande volatiliteits metings, spesifiek gerealiseerde volatiliteit en DST- metings, word gegee. In teorie salopbrengste wat meer dikwels waargeneem word tot beter akkuraatheid lei. Bogenoemde volatilitieits metings het egter tekortkominge aangesien gerealiseerde volatiliteit faal wanneer dit te hoog raak, weens mikrostruktuur effekte. Aan die ander kant kan die DST meting nie veranderlike oombliklike volatilitiet hanteer nie. Ons stel in hierdie studie 'n nuwe volatilitieits meting bekend, naamlik mikro-struktuur gerealiseerde volatiliteit, wat nie hierdie tekortkominge het nie. Net soos met gerealiseerde volatiliteit sal hierdie meting gebaseer wees op kwadratiese variasie teorie, maar die onderliggende opbrengste model is meer realisties.af_ZA
dc.format.extent101 p.
dc.identifier.urihttp://hdl.handle.net/10019.1/50401
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectRate of return -- Statistical methodsen_ZA
dc.subjectRate of return -- Forecasting -- Statistical methodsen_ZA
dc.subjectForeign exchange rates -- Forecasting -- Stastistical methodsen_ZA
dc.subjectStock price forecasting -- Statistical methodsen_ZA
dc.subjectDissertations -- Statistics and actuarial scienceen_ZA
dc.subjectTheses -- Statistics and actuarial scienceen_ZA
dc.titleNon-parametric volatility measurements and volatility forecasting modelsen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dutoit_nonparametric_2005.pdf
Size:
20.03 MB
Format:
Adobe Portable Document Format
Description: