Process flexibility in a vaccine manufacturing system under high demand uncertainty
dc.contributor.advisor | Bam, Louzanne | en_ZA |
dc.contributor.advisor | Bekker, James | en_ZA |
dc.contributor.author | Spamer, Marike | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering. | en_ZA |
dc.date.accessioned | 2023-01-31T18:47:40Z | en_ZA |
dc.date.accessioned | 2023-05-18T06:58:02Z | en_ZA |
dc.date.available | 2023-01-31T18:47:40Z | en_ZA |
dc.date.available | 2023-05-18T06:58:02Z | en_ZA |
dc.date.issued | 2023-03 | en_ZA |
dc.description | Thesis (MEng)--Stellenbosch University, 2023. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: The Covid-19 disease was first diagnosed in December 2019 in Wuhan, China. The transmission of the disease occurred at a rapid pace causing disruption to the world’s health systems and the global economy. This created an incentive to quickly develop an effective vaccine against Covid-19. To manufacture the vaccine products and meet the global demand, requires large scale manufacturing capacity. Several vaccine platforms, based on different antigen production systems, have been employed in the search for effective vaccine products. Due to the rapid pace at which the development of vaccine products are occurring, great uncertainty is associated with which platforms will receive regulatory approval and the timeline in which this will occur. This provided a challenge for the Covid-19 vaccine manufacturing system in terms of manufacturing capacity planning. This study investigated the impact that process flexibility can have in reducing the negative impact of the high demand uncertainty associated with vaccine approval for the Covid-19 vaccine manufacturing system. A discrete-event simulation model was developed in Tecnomatix Plant Simulation to investigate this. The model was verified via a series of model execution tests and the results were used to correct errors in the model. Further, the model was validated by conducting semi-structured interviews with subject matter experts in the fields of vaccine development and manufacturing. The feedback from the interviews informed improvements to the model. It was uncovered in this study that process flexibility significantly improves the performance, in terms of throughput, for a manufacturing system with high demand uncertainty when either the long chain or full flexibility configuration is incorporated (the throughput improved between 25% and 119%). The throughput performance for the full flexibility configuration is markedly better than the long chain configuration. The capital costs associated with the full flexibility configuration is often, however, viewed as an unjustifiable expense. Process flexibility investment decisions should thus also consider the capital costs associated with process flexibility configurations. It was observed that the operating cost per dose for stainless-steel equipment is significantly higher compared to single-use equipment. Many factors, however, contribute to the manufacturing costs for vaccine manufacturing and the observations in terms of the operating cost per dose for the vaccine manufacturing facilities in other circumstances may significantly differ. This study’s results did indicate that process flexibility can potentially improve the performance of a facility utilising stainless-steel equipment. It is, however, required that aspects such as regulatory approval, equipment capabilities, and capital costs are considered to determine the feasibility of a flexible stainless-steel equipment facility. This study can inform the decision on whether to further investigate the feasibility of incorporating process flexibility in a manufacturing facility utilising stainless-steel. The model developed in this study could be adjusted to investigate other research problems associated with process flexibility in vaccine manufacturing systems. Three examples of alternative applications have been identified. One of these applications involves investigating a facility that continuously manufactures a routine vaccine product, while some of the manufacturing capacity is reserved for shifting between different epidemic products. The demand for these products will fluctuate based on epidemiological outbreaks. | en_ZA |
dc.description.abstract | Die Covid-19 siekte is die eerste keer in Desember 2019 in Wuhan, China, gediagnoseer. Die oordrag van die siekte het teen ’n vinnige tempo plaasgevind wat ontwrigting van die wˆereld se gesondheidstelsels en die wˆereldekonomie veroorsaak het. Dit het ’n aansporing geskep om vinnig ’n doeltreffende entstof teen Covid-19 te ontwikkel. Om die entstofprodukte te vervaardig en aan die wˆereldvraag te voldoen, vereis grootskaalse vervaardigingskapasiteit. Verskeie entstofplatforms, gebaseer op verskillende antigeen produksiestelsels, is aangewend in die soektog na effektiewe entstofprodukte. Weens die vinnige tempo waarteen die ontwikkeling van entstofprodukte plaasvind, word groot onsekerheid geassosieer met watter platforms regulatoriese goedkeuring sal ontvang en die tydlyn waarin dit sal plaasvind. Dit het ’n uitdaging gebied vir die Covid-19-entstofvervaardigingstelsel in terme van die beplanning van vervaardigingskapasiteit. Hierdie studie het die impak wat prosesbuigsaamheid kan hˆe om die negatiewe impak van die ho¨e aanvraag-onsekerheid te verminder in verband met entstofgoedkeuring vir die Covid-19- entstofvervaardigingstelsel ondersoek. ’n Diskrete-gebeurtenis-simulasiemodel is in Tecnomatix Plant Simulation ontwikkel om dit te ondersoek. Die model is geverifieer deur middel van ’n reeks model-toetse en die resultate is gebruik om foute in die model reg te stel. Die model is gevalideer deur middel van semi-gestruktureerde onderhoude met vakkundiges op die gebied van entstofontwikkeling en -vervaardiging te voer. Die terugvoer van die onderhoude het verbeteringe aan die model ingelig. Dit is in hierdie studie ontdek dat prosesbuigsaamheid die werkverrigting, in terme van deurset, aansienlik verbeter vir ’n vervaardigingstelsel met ho¨e aanvraag-onsekerheid wanneer ´of die langketting- ´of volle buigsaamheidskonfigurasie toegepas is (die deurset het tussen 25% en 119% verbeter). Die deursetprestasie van die volle buigsaamheidskonfigurasie is aansienlik beter as die langkettingkonfigurasie. Die kapitaalkoste verbonde aan die volle buigsaamheidskonfigurasie word egter dikwels as ’n te duur uitgawe beskou. Beleggingsbesluite oor prosesbuigsaamheid moet dus ook die kapitaalkoste wat met prosesbuigsaamheidskonfigurasies geassosieer word, in ag neem. Daar is waargeneem dat die bedryfskoste per dosis vir vlekvrye staal toerusting aansienlik ho¨er is in vergelyking met enkelgebruik toerusting. Baie faktore dra egter by tot die vervaardigingskoste vir entstofvervaardiging en die waarnemings in terme van die bedryfskoste per dosis vir die entstofvervaardigingsfasiliteite in ander omstandighede kan aansienlik verskil. Hierdie studie se resultate het wel aangedui dat prosesbuigsaamheid moontlik die werkverrigting van ’n fasiliteit wat vlekvrye staal toerusting gebruik, kan verbeter. Dit word egter vereis dat aspekte soos regulatoriese goedkeuring, toerustingvermo¨ens en kapitaalkoste oorweeg word om die uitvoerbaarheid van ’n buigsame vlekvrystaaltoerustingfasiliteit te bepaal. Hierdie studie kan die besluit om die uitvoerbaarheid van die inkorporering van prosesbuigsaamheid in ’n vervaardigingsfasiliteit wat vlekvrye staal gebruik verder te ondersoek, inlig. Die model wat in hierdie studie ontwikkel is, kan aangepas word om ander navorsingsprobleme wat verband hou met prosesbuigsaamheid in entstofvervaardigingstelsels te ondersoek. Drie voorbeelde van alternatiewe toepassings is ge¨ıdentifiseer. Een van hierdie toepassings behels die ondersoek van ’n fasiliteit wat voortdurend ’n roetine-entstofproduk vervaardig terwyl ’n gedeelte van die produksiekapasiteit toegeken word aan die vervaardiging van epidemiese produkte. Sommige van die vervaardigingskapasiteit word dus verskuif tussen verskillende epidemiese produkte. Die vraag sal wissel op grond van epidemiologiese uitbrake. | ad_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | xxv, 366 pages : illustrations | eb |
dc.identifier.uri | http://hdl.handle.net/10019.1/126968 | |
dc.language.iso | en_ZA | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject.lcsh | Vaccines industry | en_ZA |
dc.subject.lcsh | Communicable diseases | en_ZA |
dc.subject.lcsh | Vaccine manufacturing | en_ZA |
dc.title | Process flexibility in a vaccine manufacturing system under high demand uncertainty | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- spamer_process_2023.pdf
- Size:
- 5.08 MB
- Format:
- Adobe Portable Document Format
- Description: