Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams
dc.contributor.author | Miah, Md Jihad | en_ZA |
dc.contributor.author | Ali, Md Kawsar | en_ZA |
dc.contributor.author | Babafemi, Adewumi John | en_ZA |
dc.contributor.author | Paul, Suvash Chandra | en_ZA |
dc.date.accessioned | 2022-01-04T12:01:09Z | |
dc.date.available | 2022-01-04T12:01:09Z | |
dc.date.issued | 2021-10-21 | |
dc.description | CITATION: Miah, M. J. et al. 2021. Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams. Materials, 14(21):6268, doi:10.3390/ma14216268. | |
dc.description | The original publication is available at https://www.mdpi.com | |
dc.description.abstract | ENGLISH ABSTRACT: This research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT). The compressive strength and durability properties (i.e., porosity, resistance to chloride ion penetration, and capillary water absorption) were assessed using the same batch of concrete mix used to cast RC beams. The experimental results have shown that the flexural load of RC beams made with IFSSA was significantly higher than the control beam (100% FCBA). The increment of the flexural load was proportional to the content of IFSSA, with an increase of 27% for the beam made with 80% IFSSA than the control beam. The compressive strength of concrete increased by 56% and 61% for the concrete made with 80% and 100% IFSSA, respectively, than the control concrete, which is in good agreement with the flexural load of RC beams. Furthermore, the porosity, resistance to chloride ion penetration, and capillary water absorption were inversely proportional to the increase in the content of IFSSA. For instance, porosity, chloride penetration, and water absorption decreased by 43%, 54%, and 68%, respectively, when IFSSA entirely replaced FCBA. This decreasing percentage of durability properties is in agreement with the flexural load of RC beams. A good linear relationship of porosity with chloride penetration resistance and capillary water absorption was observed. | en_ZA |
dc.description.uri | https://www.mdpi.com/1996-1944/14/21/6268 | |
dc.description.version | Publisher's version | |
dc.format.extent | 18 pages | en_ZA |
dc.identifier.citation | Miah, M. J. et al. 2021. Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams. Materials, 14(21):6268, doi:10.3390/ma14216268. | |
dc.identifier.issn | 1996-1944 (online) | |
dc.identifier.other | doi:10.3390/ma14216268 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/124040 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | MDPI | en_ZA |
dc.rights.holder | Authors retain copyright | en_ZA |
dc.subject | Steel -- Slag | en_ZA |
dc.subject | Induction furnaces | en_ZA |
dc.subject | Fire-clay brick | en_ZA |
dc.subject | Flexural strength | en_ZA |
dc.subject | Durability of concrete | en_ZA |
dc.title | Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams | en_ZA |
dc.type | Article | en_ZA |