Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams

dc.contributor.authorMiah, Md Jihaden_ZA
dc.contributor.authorAli, Md Kawsaren_ZA
dc.contributor.authorBabafemi, Adewumi Johnen_ZA
dc.contributor.authorPaul, Suvash Chandraen_ZA
dc.date.accessioned2022-01-04T12:01:09Z
dc.date.available2022-01-04T12:01:09Z
dc.date.issued2021-10-21
dc.descriptionCITATION: Miah, M. J. et al. 2021. Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams. Materials, 14(21):6268, doi:10.3390/ma14216268.
dc.descriptionThe original publication is available at https://www.mdpi.com
dc.description.abstractENGLISH ABSTRACT: This research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT). The compressive strength and durability properties (i.e., porosity, resistance to chloride ion penetration, and capillary water absorption) were assessed using the same batch of concrete mix used to cast RC beams. The experimental results have shown that the flexural load of RC beams made with IFSSA was significantly higher than the control beam (100% FCBA). The increment of the flexural load was proportional to the content of IFSSA, with an increase of 27% for the beam made with 80% IFSSA than the control beam. The compressive strength of concrete increased by 56% and 61% for the concrete made with 80% and 100% IFSSA, respectively, than the control concrete, which is in good agreement with the flexural load of RC beams. Furthermore, the porosity, resistance to chloride ion penetration, and capillary water absorption were inversely proportional to the increase in the content of IFSSA. For instance, porosity, chloride penetration, and water absorption decreased by 43%, 54%, and 68%, respectively, when IFSSA entirely replaced FCBA. This decreasing percentage of durability properties is in agreement with the flexural load of RC beams. A good linear relationship of porosity with chloride penetration resistance and capillary water absorption was observed.en_ZA
dc.description.urihttps://www.mdpi.com/1996-1944/14/21/6268
dc.description.versionPublisher's version
dc.format.extent18 pagesen_ZA
dc.identifier.citationMiah, M. J. et al. 2021. Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams. Materials, 14(21):6268, doi:10.3390/ma14216268.
dc.identifier.issn1996-1944 (online)
dc.identifier.otherdoi:10.3390/ma14216268
dc.identifier.urihttp://hdl.handle.net/10019.1/124040
dc.language.isoen_ZAen_ZA
dc.publisherMDPIen_ZA
dc.rights.holderAuthors retain copyrighten_ZA
dc.subjectSteel -- Slagen_ZA
dc.subjectInduction furnacesen_ZA
dc.subjectFire-clay bricken_ZA
dc.subjectFlexural strengthen_ZA
dc.subjectDurability of concreteen_ZA
dc.titleImpact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beamsen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
miah_impact_2021.pdf
Size:
6.03 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: