Analytic methods in combinatorial number theory
Date
2015-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT : Two applications of analytic techniques to combinatorial problems with
number-theoretic flavours are shown. The first is an application of the
real saddle point method to derive second-order asymptotic expansions for
the number of solutions to the signum equation of a general class of sequences.
The second is an application of more elementary methods to yield asymptotic
expansions for the number of partitions of a large integer into powers of an
integer b where each part has bounded multiplicity.
AFRIKAANSE OPSOMMING : Ons toon twee toepassings van analitiese tegnieke op kombinatoriese probleme met getalteoretiese geure. Die eerste is ’n toepassing van die reële saalpuntmetode wat tweede-orde asimptotiese uitbreidings vir die aantal oplossings van die ‘signum’ vergelyking vir ’n algemene klas van rye aflewer. Die tweede is ’n toepassing van meer elementêre metodes wat asimptotiese uitbreidings vir die aantal partisies van ’n groot heelgetal in magte van ’n heelgetal b, waar elke deel ’n begrensde meervoudigheid het, aflewer
AFRIKAANSE OPSOMMING : Ons toon twee toepassings van analitiese tegnieke op kombinatoriese probleme met getalteoretiese geure. Die eerste is ’n toepassing van die reële saalpuntmetode wat tweede-orde asimptotiese uitbreidings vir die aantal oplossings van die ‘signum’ vergelyking vir ’n algemene klas van rye aflewer. Die tweede is ’n toepassing van meer elementêre metodes wat asimptotiese uitbreidings vir die aantal partisies van ’n groot heelgetal in magte van ’n heelgetal b, waar elke deel ’n begrensde meervoudigheid het, aflewer
Description
Thesis (MSc)--Stellenbosch University, 2015
Keywords
Combinatorics, Number theory, Asymptotic expansions, UCTD, Analytic methods -- Mathematics