Characterization of selected South African young cultivar wines using FTMIR Spectroscopy, Gas chromatography, and multivariate data analysis

dc.contributor.authorLouw, L.en_ZA
dc.contributor.authorRoux, K.en_ZA
dc.contributor.authorTredoux, A.en_ZA
dc.contributor.authorTomic, O.en_ZA
dc.contributor.authorNaes, T.en_ZA
dc.contributor.authorNieuwoudt, Heleneen_ZA
dc.contributor.authorVan Rensburg, P.en_ZA
dc.date.accessioned2011-05-15T15:56:51Z
dc.date.available2011-05-15T15:56:51Z
dc.date.issued2009
dc.description.abstractThe powerful combination of analytical chemistry and chemometrics and its application to wine analysis provide a way to gain knowledge and insight into the inherent chemical composition of wine and to objectively distinguish between wines. Extensive research programs are focused on the chemical characterization of wine to establish industry benchmarks and authentication systems. The aim of this study was to investigate the volatile composition and mid-infrared spectroscopic profiles of South African young cultivar wines with chemometrics to identify compositional trends and to distinguish between the different cultivars. Data were generated by gas chromatography and FTMIR spectroscopy and investigated by using analysis of variance (ANOVA), principal component analysis (PCA), and linear discriminant analysis (LDA). Significant differences were found in the volatile composition of the cultivar wines, with marked similarities in the composition of Pinotage wines and white wines, specifically for 2-phenylethanol, butyric acid, ethyl acetate, isoamyl acetate, isoamyl alcohol, and isobutyric acid. Of the 26 compounds that were analyzed, 14 had odor activity values of > 1. The volatile composition and FTMIR spectra both contributed to the differentiation between the cultivar wines. The best discrimination model between the white wines was based on FTMIR spectra (98.3% correct classification), whereas a combination of spectra and volatile compounds (86.8% correct classification) was best to discriminate between the red wine cultivars. © 2009 American Chemical Society.
dc.description.versionArticle
dc.identifier.citationJournal of Agricultural and Food Chemistry
dc.identifier.citation57
dc.identifier.citation7
dc.identifier.issn218561
dc.identifier.other10.1021/jf8037456
dc.identifier.urihttp://hdl.handle.net/10019.1/10072
dc.subjectarticle
dc.subjectclassification
dc.subjectcomparative study
dc.subjectdiscriminant analysis
dc.subjectgas chromatography
dc.subjectinfrared spectroscopy
dc.subjectmethodology
dc.subjectmultivariate analysis
dc.subjectodor
dc.subjectSouth Africa
dc.subjectvolatilization
dc.subjectwine
dc.subjectChromatography, Gas
dc.subjectDiscriminant Analysis
dc.subjectMultivariate Analysis
dc.subjectOdors
dc.subjectSouth Africa
dc.subjectSpectroscopy, Fourier Transform Infrared
dc.subjectVolatilization
dc.subjectWine
dc.titleCharacterization of selected South African young cultivar wines using FTMIR Spectroscopy, Gas chromatography, and multivariate data analysis
dc.typeArticle
Files