Algebraic points in tame expansions of fields

dc.contributor.advisorBoxall, Gareth Johnen_ZA
dc.contributor.authorHarrison-Migochi, Andrewen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. en_ZA
dc.date.accessioned2021-12-07T09:39:19Z
dc.date.accessioned2021-12-22T14:32:28Z
dc.date.available2021-12-07T09:39:19Z
dc.date.available2021-12-22T14:32:28Z
dc.date.issued2021-12
dc.descriptionThesis (MSc)--Stellenbosch University, 2021.en_ZA
dc.description.abstractENGLISH ABSTRACT: We investigate the behaviour of algebraic points in several expansions of the real, complex and p-adic fields. We build off the work of Eleftheriou, Günaydin and Hieronymi in [17] and [18] to prove a Pila-Wilkie result for a p-adic subanalytic structure with a predicate for either a dense elementary substructure or a dense dcl-independent set. In the process we prove a structure theorem for p-minimal structures with a predicate for a dense independent set. We then prove quantifier reduction results for the complex field with a predicate for the singular moduli and the real field with an exponentially transcendental power function and a predicate for the algebraic numbers using a Schanuel property proved by Bays, Kirby and Wilkie [5]. Finally we adapt a theorem by Ax [2] about exponential fields, key to the proof of the Schanuel property for power functions, to power functions.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Ons ondersoek die gedrag van algebraïese punte in verskeie uitbreidings van die reële, komplekse en p-adiese liggame. Ons bou op die werk van Eleftheriou, Günaydin en Hieronymi in [17] en [18] om ‘n Pila-Wilkie resultaat vir ‘n p-adiese subanalitiese struktuur met ’n predikaat vir ‘n dig elementêre substruktuur of ‘n dig dcl-onafhanklike versameling te bewys. In die proses bewys ons ‘n struktuurstelling vir p-minimale strukture met ‘n predikaat vir ‘n dig onafhanklike versameling. Ons bewys dan kwantorreduksie resultate vir die komplekse liggame met ‘n predikaat vir die komplekse vermenigvuldigingspunte en die reële liggaam met ‘n eksponensieel-transendentale magsfunksie en ‘n predikaat vir die algebraïese getalle deur gebruik te maak van ‘n Schanuel-eienskap wat bewys is deur Bays, Kirby en Wilkie [5]. Uiteindelik pas ons ‘n stelling van Ax [2] aan oor exponensiële liggame, wat noodsaaklik is vir die bewys van die Schanuel-eienskap, tot magsfunksies.af_ZA
dc.description.sponsorshipThe financial assistance of the National Research Foundation(NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.en_ZA
dc.description.versionMastersen_ZA
dc.format.extentviii, 88 pagesen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/123974
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectModel theoryen_ZA
dc.subjectTame algebrasen_ZA
dc.subjectp-Adic fieldsen_ZA
dc.subjectPila-Wilkie resultsen_ZA
dc.subjectTame expansionsen_ZA
dc.subjectSchanuel propertyen_ZA
dc.subjectDense pairsen_ZA
dc.subjectUCTD
dc.titleAlgebraic points in tame expansions of fieldsen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
harrisonmigochi_algebraic_2021.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: