Masters Degrees (Viticulture and Oenology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Viticulture and Oenology) by Subject "Antifungal agents"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, as an antifungal and biocontrol agent(Stellenbosch : Stellenbosch University, 2002-04) Carstens, Maryke,1976-; Vivier, Melane A.; Pretorius, I. S.; Van Rensburg, P.; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Fungi are an extremely diverse group of organisms and, by acting as pathogens, they can colonise various other organisms, including humans, plants and animals. The effect of this is usually detrimental, not only to agricultural crops and livestock, but also to human well-being. The extensive farming of crops and livestock requires persistent control of fungal populations, commonly through the use of chemical fungicides. However, the exclusive use of fungicides is no longer a sustainable practice, as a result of serious problems, such as increasing fungicide resistance in pathogen strains, the high costs of fungicides, as well as concern about the environment. The search by producers and scientists for alternative control measures is an ongoing process. The fungal cell wall consists of polysaccharides that not only playa role in protection of the fungi, but also in relaying signals for the invasion and infection of susceptible hosts. Chitin, a polysaccharide composed of N-acteylglucosamine (GleNAc) residues linked by P-1,4 glucosidic linkages, is one of the major components of the fungal cell wall, where it plays an important role in the apical growth of the vegetative hyphae. Chitinases (EC 3.2.1.14) are abundant proteins produced by a variety of microorganisms and plants and are necessary for the hydrolysis of the chitin polymer. During the invasion of many plant species by a pathogen, the production of a specific group of proteins, designated pathogenesis-related (PR) proteins that include chitinases, is induced as part of their defence response. Due to the facts that pathogenic fungi contain chitin in their cell walls and that plant chitinases are induced upon pathogen attack, chitinases have been confirmed as an integral and crucial part of the plant's natural defence response. Chitinases have increasingly been targeted to upregulate plants' endogenous disease resistance mechanisms through transgenic overexpression in a variety of hosts. Several species of fungi, including various Trichoderma spp., are potent biocontrol agents of plant pathogenic fungi and insects. The antagonistic activities of these biological control agents towards phytopathogens are based on the secretion of extracellular hydrolytic enzymes, such as cell wall-degrading chitinase enzymes. However, biological control is not restricted to naturally occurring biocontrol agents. Through the process of genetic transformation, other fungal or yeast species can be enhanced to produce their own chitinases or other antimicrobial substances more effectively in order to yield potent biocontrol agents. Various types of chitinases have been applied in the production of fungal resistant plants and some research has been done on the application of chitinases, from a variety of microorganisms, as biological control agents. In contrast, very little is known about the antifungal activity of the Saccharomyces cerevisiae chitinase enzyme, encoded by the CTS1-2 gene. The CTS1-2 gene was utilised in this study as a candidate for overexpression in both yeast and plant expression systems to analyse the ability of the encoding chitinase to inhibit fungal growth. The first objective of this study involved the high level expression and optimisation of the secretion of the CTS1-2 gene in S. cerevisiae to render recombinant yeast with enhanced antifungal abilities and with possible applications as a biocontrol agent to control plant pathogenic fungi. It was hypothesised that high-level expression and efficient secretion would be prerequisites in a biocontrol yeast strain. To this end, two strong promoters and terminators were included in the study and the secretion of the chitinase gene was evaluated by testing three different secretion signals. The secretion signals included: the native CTS1-2 secretion signal, the S. cerevisiae mating pheromone a-factor (MFa1) secretion signal, as well as the Trichoderma reesei f3-xylanase 2 (XYN2) secretion signal. The phosphoglycerate kinase 1 (PGK1) and alcohol dehydrogenase 2 (ADH2) promoters and terminators were employed to achieve high-level expression. The results obtained from the analysis of the recombinant yeasts showed that the PGK1 promoter-terminator constructs yielded high level CTS1-2-expressing and chitinase-producing strains of S. cerevisiae PRY488. The ability of the different secretion signals to efficiently secrete the overexpressed chitinase was analysed and it was found that the non-native secretion signals delivered significantly more protein to the extracellular environment. It was thus evident that the performance of the MFa1 and XYN2 secretion signals was superior to that of the native secretion signal. The antifungal activities of the recombinant chitinases produced by these constructs were tested in in vitro assays against Botrytis cinerea. The enzymes led to a significant reduction in hyphal development, caused by extreme structural damage to the hyphal tips, the hyphal cell walls as well as the ability of the fungus to form reproductive and survival structures, thereby confirming the antifungal abilities of this enzyme. The ADH2 promoter-terminator constructs yielded CTS1-2 transcripts, but no chitinase activity could be detected with any of these strains. The reasons for this still remain unclear. The second objective of this study was to assess the potential of the yeast chitinase gene to upregulate defence against fungal infection in planta. In order to elucidate this, the CTS1-2 gene was constitutively overexpressed in tobacco plants, targeting the chitinase both to the intra- and the extracellular environment. The results obtained showed that the transgenic tobacco lines regenerated in this study stably integrated the transgene, exhibiting transgene expression as well as the production of a biologically active yeast chitinase enzyme. The F, progeny were rigorously tested for resistance to B. cinerea, and both in vitro and in planta assays confirmed that the yeast chitinase increased the plant's tolerance to fungal infection; some of the lines showed disease resistance of 65 and 70%. The plants expressing an extracellularly targeted chitinase gene are still under evaluation. Interesting results are expected relating to the effect of the chitinase on the plant surface with regards to disease resistance to fungal pathogens. In conclusion, the combined set of results from both the yeast and plant overexpression studies has confirmed the strong antifungal effect of yeast chitinases. The yeast CTS1-2 chitinase could be instrumental in the development of a new generation of yeast strains with improved antifungal capabilities. This enzyme could also play an important role in genetic transformation technologies aimed at enhanced disease resistance.