Masters Degrees (Molecular Biology and Human Genetics)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Molecular Biology and Human Genetics) by Subject "AIDS vaccines"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAccessory gene components for an HIV-1 subtype C vaccine : functional analysis of mutated Tat, Rev and Nef antigens(Stellenbosch : Stellenbosch University, 2002-12) Scriba, Thomas Jens; Van Rensburg, E. Janse; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Medicine.ENGLISH ABSTRACT: HIV has attained a global distribution and the number of infected people reached an estimated 28.1 million in sub-Saharan Africa at the end of 2001. HIV-1 subtype C is overwhelmingly prevalent in Botswana and South Africa and to date no interventions have been successful enough to curb the rapid spread of the virus. A number of HIV-1 vaccine strategies are being developed, however the breadth and efficacy of such candidate vaccines, many of which are based on the HIV-1 structural genes pol, gag and env, have mostly been found to be inadequate. The HIV-1 accessory genes are attractive components of HIV vaccines due to their role in viral pathogenesis, early expression and the high ratio of conserved CTl epitopes. Yet, because of undesirable properties questions regarding their safety as vaccine components are raised. In this study candidate tat, rev and nefmutants were assessed for efficient expression and inactivation of undesirable functionality. / Plasmid constructs that encode the South African HIV-1 subtype C consensus Tat, Rev and Nef proteins were constructed. The coding sequences of the genes were codon-optimised for optimum protein expression and these synthetic genes were constructed using overlapping 50-mer oligonucleotides. Furthermore, the proteins were mutated at previously described sites by PCR-based site-directed mutagenesis to render them inactive for their respective functions. Corresponding wild-type Tat, Rev and Nef constructs were also made from viral isolates that were least dissimilar to the respective consensus amino acid sequences. tn vitro expression of the different constructs were assessed in 293 cells by Western blotting with polyclonal mouse sera, which were generated by DNA immunisation with one of the Tat, Rev and Nef constructs. The transactivation activity of Tat variants and Rev-mediated nuclear export activity of RRE-containing transcripts were studied in cotransfection experiments using reporter-gene-based assays while Nef functionality was assessed in a cotransfection assay with subsequent flow cytometric analysis of surface CD4 and MHC-I expression on 293 cells. Sequence analysis of the South African HIV-1 subtype C consensus sequences of Tat, Rev and Nef revealed a high degree of similarity with a consensus sequence that was drawn up from a large number of viruses from southern Africa. These consensus sequences were also closer to individual viral isolate sequences than any individual sequences were, indicating that the use of a consensus sequence may serve to reduce genetic diversity between a vaccine and circulating viruses. Expression levels of the sequence-modified tat and nef gene constructs were not significantly higher than the wild-type constructs, however, the codon-optimised rev mutant exhibited markedly higher expression than the wild-type rev construct. Immunoreactivity of the protein with the mouse sera demonstrates expression and immunogenicity of the Tat, Rev and Nef immunogens in mice. In the background of the subtype C Tat, a single C22 mutation was insufficient to inactivate l TRdependent CAT expression in 293T and Hela cells. Yet, this activity was significantly impaired using the single mutation, C3?, or the double mutation, C22C3? Compared to the wild-type Rev, the function of the Rev with a double mutation, M5M10, was completely abrogated. Similarly, while the wild-type Nef and native, codon-optimised consensus Nef proteins mediated CD4 and MHC-I downregulation, CD4 downregulation was completely abrogated in one of the mutants, while both Nef mutants were entirely deficient for MHC-I downregulation. These data demonstrate the high expression levels and impaired functionality of sequence-modified HIV-1 subtype C consensus Tat, Rev and Nef DNA immunogens that may be used as single-standing vaccine components or form part of a multicomponent HIV-1 vaccine.