Masters Degrees (Plant Pathology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Plant Pathology) by Subject "Antifungal agents"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe expression of yeast antifungal genes in tobacco as possible pathogenesis-related proteins(Stellenbosch : Stellenbosch University, 2003-12) Basson, Esmé Maree; Vivier, Melane A.; Pretorius, I. S.; Van Rensburg, P.; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: The resistance of plants to infection by phytopathogenic microorganisms is the result of multiple defence reactions comprising both constitutive and inducible barriers. While disease is the exception, such exceptions can be costly and even devastating. In particular, fungal diseases remain one of the major factors limiting crop productivity worldwide, with huge losses that need to be weighed up against massive cash inputs for pesticide treatments. Part of the defence reactions of plants is the synthesis of pathogenesis-related proteins, such as the plant hydrolases, glucanases and chitinases. In recent years, attention has been paid to the implementation of these proteins in plant transformation schemes. The rationale for this approach was that these antimicrobial agents not only degrade the main cell wall components of fungi, but also produce glucosidic fragments that act as elicitors of the biosynthesis of defence metabolites by the host. Furthermore, since these active antimicrobial agents are individually encoded by single genes, these defence systems should and have been shown to be highly amenable to manipulation by gene transfer. In this study, yeast glucanases from Saccharomyces cerevisiae were evaluated for their potential as antifungal proteins. The glucanases tested for their antifungal activity against Botrytis cinerea were the yeast EXG1 and BGL2 genes, encoding an exoglucanase and an endoglucanase respectively. An in vitro assay performed on these glucanases indicated that exoglucanase had a more detrimental effect on B. cinerea hyphal development and growth than the endoglucanase; the former caused typical disruption of the cells and leakage of cell material. The yeast exoglucanase was subsequently subcloned into a plant expression cassette containing the strong constitutive 358 promoter, yielding plasm ids pEXG1 and pMJ-EXG1. The pMJ-EXG1 construct targeted the exoglucanase to the apoplastic region with a signal peptide from an antimicrobial peptide from Mirabilis jalapa, Mj-AMP2. The pEXG1 and pMJ-EXG1 constructs were mobilised into Agrobacterium tumefaciens to facilitate the subsequent tobacco transformation, which yielded transgenic tobacco lines designated E and MJE respectively. Transgene integration was confirmed with southern blot and PCR analyses for both the E and MJE lines. The expression and heterologous production of the EXG1-encoded exoglucanase in the E-transgenic lines was shown with northern blots and activity assays respectively. Moreover, the high level of expression of the yeast exoglucanase led to a decrease in susceptibility of the E lines to B. cinerea infection in comparison to the untransformed tobacco controls. An average decrease in disease susceptibility of 40% was observed in an in planta detached leaf assay. Crude protein extracts from the E lines were also analysed in an in vitro quantitive fungal growth assay, inhibiting in vitro fungal growth by average 20%, thus further confirming the antifungal nature of the yeast exoglucanase. Although integration of the MJ-EXG1 expression cassette was confirmed, no mRNA levels could be detected with northern blot or RT-PCR analysis of the MJE lines. These lines also did not show any in vitro antifungal activities or a decrease in susceptibility to B. cinerea infection in the detached leaf assay. It is suspected that this result is possibly linked to gene silencing, a phenomenon quite frequently associated with heterologous and/or overexpression of glucanases in plant hosts. It appears as if the targeted overexpression to the apoplastic space triggered the gene silencing response, since the intracellularly overexpressed product was produced and shown to display activity. The yeast exoglucanase thus joins the list of silenced glucanases in overexpression studies in plants. Overall, this study confirmed the antifungal characteristics of the Saccharomyces exoglucanase and provides valuable information of the possibility of utilising yeast glucanases in a transgenic environment. A decrease in the susceptibility of tobacco to B. cinerea infection, as shown by the overexpressed EXG1-encoded exoglucanases, merits further investigation into the use of this gene in the engineering of disease-resistant crops.