Masters Degrees (Plant Pathology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Plant Pathology) by Subject "Acacia cyclops -- Control"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemRisk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in the South African strandveld and limestone fynbos(Stellenbosch : Stellenbosch University, 2014-04) Kotze, Louis Jacobus Daniel; Wood, Alan R.; Lennox, Cheryl L.; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: Acacia cyclops, an invasive weed in South Africa, was initially imported to stabilize the sand dunes in the southern Cape. The spread of A. cyclops is a major threat to the fragile biodiversity of the strandveld and limestone fynbos vegetation. Acacia cyclops dieback has been observed for some time, although the causative agent, Pseudolagarobasidium acaciicola, has only recently been described. This fungus is nominated for development as a mycoherbicide to control A. cyclops. Although current biological and mechanical control efforts are proving to be partially effective, A. cyclops is still causing major damage to natural ecosystems. The introduction of a mycoherbicide would increase the cost effectiveness of controlling this weed in the long term. The majority of the literature that was reviewed supports the use of mycoherbicides as biocontrol agents, especially when taking into account the decrease in acceptance and availability of chemical control agents. Considering that the Pseudolagarobasidium genus consists of saprobes, opportunistic facultative pathogens and endophytes, P. acaciicola is predicted to have similar biological characteristics. The species is also highly likely to be indigenous, although with a wider distribution range than previously envisaged. Strict precautions should still however be taken to ensure that non-target species will not be threatened. This study consists of a unique risk assessment comprising different sections. A field survey was performed to record disease incidence among indigenous woody plant species around 100 diseased A. cyclops trees. Subsequently, DNA extractions were made from the roots of the diseased indigenous plants and A. cyclops trees to verify the presence of P. acaciicola. Of the 2432 indigenous woody plants observed, 22 (0.9%) were dead or dying, while P. acaciicola was detected in 10 of these (0.4%), representing six species. Pseudolagarobasidium acaciicola was detected in 47% of the A. cyclops trees. Although P. acaciicola could be a weak pathogen in a broad range of indigenous plant species, the extremely low disease incidence is an indication of a low level of risk associated with using P. acaciicola as a mycoherbicide. Additionally, pathogenicity trials on indigenous plant species were conducted to give an indication of host susceptibility. A total of 30 indigenous plant species were wound inoculated at two field sites, and potted plants representing 17 indigenous plant species were wound and soil inoculated in a nursery. The optimum growth temperature for P. acaciicola was determined in order to understand it’s seasonal and landscape preference. Mortality was recorded in five of nine indigenous Fabaceae species, while a single plant each of four other non-Fabaceae species died after inoculation. No plants outside the Fabaceae family died in the field. Only A. cyclops seedlings died following soil inoculation. Longitudinal sections of stem inoculated plants revealed no systemic infection in Fabaceae species that survived inoculation. Infection in susceptible Fabaceae species was generally more extensive than infection in susceptible non-Fabaceae species. The optimum growth rate for P. acaciicola was determined at 35°C, indicating an adaptation to summer conditions. Indigenous Fabaceae species do display greater susceptibility than species from other families, indicating some level of specificity, although susceptible species can not be phylogenetically circumscribed. Aside from being a facultative pathogen on A. cyclops, results from this study suggest that P. acaciicola is primarily a saprophyte and an occasional opportunistic pathogen on some indigenous Fabaceae, possibly only being a weak opportunistic pathogen on some non-Fabaceae species. However, the risk of not effectively managing A. cyclops populations in these threatened vegetation types outweighs the risk associated with using P. acaciicola as a mycoherbicide. Therefore the use of P. acaciicola as a mycoherbicide on A. cyclops would be recommended, provided that sufficient monitoring of treated sites is implemented that primarily focus on the indigenous Fabaceae species. The effective control of A. cyclops could be achieved when P. acaciicola is used to compliment current mechanical, biological and chemical control methods in an integrated management strategy.