Department of Biomedical Sciences
Permanent URI for this community
Browse
Browsing Department of Biomedical Sciences by Subject "Acetylcholinesterase (AChE)"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCharacterization of the interaction between acetylcholinesterase and laminin : a template for discovering redundancy(Stellenbosch : Stellenbosch University, 2012-03) Swart, Chrisna; Johnson, Glynis; Stellenbosch University. Faculty of Health Sciences. Dept. of Biomedical Sciences. Molecular Biology and Human Genetics.ENGLISH ABSTRACT: Apart from its primary function in the synaptic hydrolysis of acetylcholine, acetylcholinesterase (AChE) has been shown through in vitro demonstrations to be able to promote various non-cholinergic functions, including cell adhesion and neurite outgrowth, differentiation, and amyloidosis. AChE was also shown to bind to mouse laminin-111 in vitro by an electrostatic mechanism. Previous results suggest that the site on AChE recognised by certain monoclonal antibodies (MAbs) might be critical for differentiation. These MAbs were found to inhibit both laminin binding and cell adhesion in neuroblastoma cells. In this study, the structure and characteristics of this site were investigated, using the AChE-laminin interaction as a template as well as a detailed epitope analysis of the MAbs. The interaction sites of AChE and laminin were investigated using phage display, modelling and docking, synthetic peptides, enzyme linked immunosorbent assays (ELISAs) and conformational interaction site mapping. Docking of AChE with the single-chain variable fragments (scFvs) produced from the phage display showed the major recognition motifs to be the 90Arg-Glu-Leu-Ser-Glu-Asp motif, the 40Pro-Pro-Met-Gly sequence, and the 59Val-Val-Asp-Ala-Thr-Thr (human) motif. Mouse AChE was found to interact with the basic structures Val2718-Arg-Lys-Arg- Leu2722; Tyr2738-Tyr2739, Tyr2789-Ile-Lys-Arg-Lys2793; and Val2817-Glu-Arg-Lys2820, on the 1 G4 domain of laminin. ELISAs using synthetic peptides confirmed the involvement of the AG-73 site (2719-2729). This site overlaps with laminin’s heparin-binding site. Docking showed the major component of the interaction site on AChE to be the acidic Arg90-Glu-Leu-Ser-Glu-Asp95 (omega loop), and also involving the Pro40-Pro-Val42, Arg46 (linked to Glu94 by a salt bridge) and the hexapeptide Asp61 Ala-Thr-Thr-Phe-Gln66. Epitope analysis showed the MAb’s major recognition site to be the sequence Pro40-Pro- Met-Gly-Pro-Arg-Arg-Phe48 (human AChE). The MAbs also reacted with the prolinerich sequences Pro78-Gly-Phe-Glu-Gly-Thr-Glu84 and Pro88-Asn-Arg-Glu-Leu-Ser-Glu- Asp95. These results define the interaction sites involved in the AChE-laminin interaction and suggest that the interaction plays a role in cell adhesion. Despite the in vitro demonstrations of the importance of AChE’s non-classical functions, the AChE knockout survives. Results from this study suggest the possibility of functional redundancy between AChE and other molecules in early development. Using these in vitro findings that AChE is able to bind laminin-111, information on the interaction sites, as well as results from the monoclonal antibody (MAb) epitope analysis, the idea of redundancy was investigated. Docking and bioinformatics techniques were used to investigate structurally similar molecules that have comparable spatiotemporal expression patterns in the embryonic nervous system. AChE has been shown to be involved in the pathogenesis of Alzheimer’s disease, thus molecules associated with brain function and neurodegeneration were also investigated. Molecules with which AChE could be possibly redundant are syndecans, glypicans, perlecan, neuroligins and the low-density lipoprotein receptors and their variants. AChE was observed to dock with growth arrest-specific protein 6 (Gas6) as well as apolipoprotein E3 (ApoE-3) at the same site as the laminin interaction. The AChE interaction site was shown to resemble the apolipoprotein-binding site on the low density lipoprotein receptor, and related molecules, including the low density lipoprotein receptor-related molecule (LRP) and the sortilin-related receptor (SORL1). These molecules, along with apoE, are associated with Alzheimer’s disease. Resemblances to the triggering receptor on myeloid cells (TREM1) were also suggested; this is interesting as AChE has been implicated in both haematopoiesis and haematopoietic cancers. Coimmunoprecipitation results, applied to investigate alternative ligands for AChE, confirmed the AChE-laminin interaction in neuroblastoma cells, and also suggested the existence of other binding partners. In conclusion, characterisation of the AChE-laminin interaction sites and investigation of structurally similar sites in other molecules suggests a role for AChE in the stabilization of the basement membrane of developing neural cells and provides a feasible explanation for the survival of the knockout mouse. Furthermore, the demonstrated similarity of the AChE interaction site to sites on molecules, notably the low density lipoprotein receptor family and SORL1 and their apolipoprotein ligands that are implicated in the pathology of Alzheimer’s disease, as well as the possible link to haematopoietic differentiation and cancers, warrants further investigation.