Doctoral Degrees (Chemistry and Polymer Science)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Chemistry and Polymer Science) by Subject "Addition polymerization"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAdvanced analytical methods for the analysis of complex polymers prepared by RAFT and RITP(Stellenbosch : Stellenbosch University, 2015-04) Wright, Trevor Gavin; Pasch, Harald; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: Synthetic polymers are complex compounds that have multiple distributions with regard to molar mass, chemical composition, functionality and molecular architecture. Therefore, the molecular complexity of these compounds can only be analysed using a combination of analytical techniques. Well-defined complex polymers can be prepared by different types of living radical polymerisation, including reversible addition–fragmentation chain transfer polymerisation (RAFT) and reverse iodine transfer polymerisation (RITP). Using these techniques, several different homopolymers and copolymers have been prepared. However, there is still space for some more extended research. Many different types of multifunctional RAFT agents have been reported in literature. A tetrafunctional RAFT agent was prepared in our laboratory and used for the first time in the polymerisation of styrene. The polymerisation reaction was followed using in situ 1H nuclear magnetic resonance (NMR) and the molar masses of the resultant polymers were determined using size exclusion chromatography (SEC). The molar masses of the star-shaped polystyrenes (PS) were found to be less than the theoretical molar masses. This was due to the fact that SEC was calibrated with linear PS standards, while the samples under investigation are branched. Linear and branched polymers have different hydrodynamic volumes at similar molar masses. In order to prove that the star-shaped polymers were in fact four-armed, the samples were cleaved by aminolysis to yield the linear PS arms. The molar masses of the arms were in agreement with the theoretical arm molar masses based in the fourarmed structure. RITP is a relatively new living radical polymerisation technique. Various monomers have been prepared using RITP, including acrylates, methacrylates and styrene. The polymers formed using this technique have been characterised by techniques such as SEC, NMR and mass spectrometry (MS). However, very little advanced characterisation work has been done on polymers synthesised via RITP. Polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers were prepared via RITP and the microstructure analysed by in situ NMR and other advanced analytical techniques. The chromatograms from gradient HPLC of the PS-b-PBA block copolymers showed a separation based on chemical composition. The preparation of deuterated polymers via RITP has not been reported in literature. Hydrogenous-polystyrene-block-deuterated-polystyrene (hPS-b-dPS) was synthesised via RITP and analysed using liquid chromatography at critical conditions. An isotopic separation was achieved when critical conditions were established for hydrogenous PS (h-PS). A separation of the block copolymer from the first block was also achieved under chromatographic conditions where the block copolymer eluted in SEC mode while the first block eluted in LAC mode. The separation according to the block structure was confirmed by two-dimensional liquid chromatography.
- ItemMechanistic studies of reversible addition-fragmentation chain transfer mediated polymerization(Stellenbosch : Stellenbosch University, 2004-03) Calitz, Francois Malan; Sanderson, R. D.; Tonge, M. P.; Stellenbosch University. Faculty of Science. Dept. of Chemistry & Polymer Science .ENGLISH ABSTRACT: To comply with the ever growing demands for materials with better properties and complex architectures, polymer chemistry has resorted to the use of living free radical polymerization techniques. Despite the structural control some of these techniques offer, major disadvantages do exist. For example, most require ultra-pure reagents, hence only a small fraction of the monomers used in industry can be polymerized in this way. This rendered these new living techniques less advantageous from a commercial point of view. Recently, a revolutionary new living free radical process, namely the reversible addition-fragmentation chain transfer process, or RAFT process, was developed that combines the control over the polymer produced with the robustness and versatility of a free radical process. However, the RAFT process is not without its problems. In some dithioester mediated polymerizations, significant inhibition and rate retardation effects have been observed. Two main opposing opinions have been proposed in recent literature to explain these phenomena observed. The main point of difference between these two groups is the fate of the formed intermediate RAFT radicals, i.e., slow fragmentation of the formed intermediate radicals together with possible reversible intermediate RAFT radical termination, or fast fragmentation of the formed intermediate radicals together with possible irreversible intermediate RAFT radical termination. Between these opposing two groups, there is a difference of six orders of magnitude for the rate of fragmentation of the formed intermediate RAFT radicals. The work presented in this thesis is an attempt to clarify some of the mysteries, i.e., inhibition and rate retardation observed in some RAFT polymerizations. Experimental evidence to support or contradict the theories of the above mentioned two opposing groups was investigated. The concentration-time evolution of the intermediate radical concentration (cy), for styrene and butyl acrylate polymerizations mediated by cumyl dithiobenzoate (COB) at 70°C and 90 °C, was followed via in situ electron spin resonance spectroscopy (ESR). The concentration-time evolution profiles observed were ascribed to the formation of very short chains during the early stages of the reaction. It was also found that the RAFT process is not particularly sensitive to oxygen. The intermediate and propagating radical (cp) concentrations (and their ratio) for the cumyl dithiobenzoate mediated styrene polymerizations were examined by ESR spectroscopy and kinetics. The system showed strong chain length effects in kinetics, assuming all chains were of similar number average molar mass (Mn). However, unusual behavior with respect to existing mechanistic knowledge was observed in other aspects of the system. The central equilibrium "constant" (Keq) was found to be dependent on both temperature and initial reactant concentrations. The observed intermediate radical concentrations were not consistent with predictions based on existing literature models. It was also found that the time dependence of the intermediate radical concentration varies significantly with the type of RAFT agent used. Unexpectedly, intermediate radicals were detected at very long reaction times in the virtual absence of initiator, enhancing the belief of possible reversible termination reactions involving the intermediate radicals. An extra radical (nonpropagating or intermediate) species was observed (via ESR spectroscopy) to form during some reactions. Its concentration increased with time. The combination of data from several analytical techniques provided evidence for the formation of dead chains by the termination of intermediate radicals in the free radical polymerization of styrene, mediated by a cumyl dithiobenzoate RAFT agent, at 84°C. Experiments done focused on the early stages of the reactions, targeting very low final number average molar mass values, with high initiator concentrations. The formation of these terminated chains did not occur to a significant extent until a large fraction of the chains reached a degree of polymerization greater than unity. This corresponded to the occurrence of a maximum in intermediate radical concentration. In situ 1H nuclear magnetic resonance (NMR) and electron spin resonance spectroscopy was used to directly investigate the processes that occur during the early stages (typically the first few monomer addition steps) of an AIBN-initiated reversible addition fragmentation chain transfer polymerization of styrene, in the presence of a cyanoisopropyl dithiobenzoate and cumyl dithiobenzoate RAFT agent, at 70°C and 84 °C respectively. 1H NMR spectroscopy allowed the investigation of the change in concentration of important dithiobenzoate species as a function of time. Identification and concentrations of the radicals present in the system could be inferred from corresponding ESR spectroscopy data. An apparent "inhibition" effect was observed in both the cyanoisopropyl and cumyl dithiobenzoate mediated polymerizations. This effect could be reduced by increasing the reaction temperature to 84 °C. However, the use of cumyl dithiobenzoate as RAFT agent prolonged this effect. This apparent "inhibition" effect was attributed to selective fragmentation of the formed intermediate radicals during the early stages of the reaction, and to different propagation rate coefficients (kp) of the resulting (different) radicals. A change in the equilibrium coefficient for the systems investigated was ascribed to possible progressively decreasing addition and fragmentation rate coefficients of propagating and intermediate radicals formed during the reaction. The increase in intermediate radical concentration, and thus possible intermediate radical termination, was shown to also be a probable cause of the rate retardation observed in the RAFT mediated systems investigated. To conclude, probable causes of the observed inhibition and rate retardation in some dithiobenzoate mediated systems were investigated. It was found that intermediate RAFT radical termination does occurs, albeit reversibly or irreversibly. A maximum in the intermediate radical concentration, and thus possible intermediate radical termination, was seen to occur during the observed rate retardation. An apparent inhibition effect observed was ascribed to a possible change in termination kinetics, the formation of terminated intermediate radical products and a rapidly changing kp of the propagating radicals.
- ItemNovel electrospun fibres of amphiphilic organic-inorganic graft copolymers of poly(acrylonitrile)-graftpoly( dimethylsiloxane) for silicone composite reinforcement(Stellenbosch : Stellenbosch University, 2011-12) Bayley, Gareth Michael; Mallon, Peter; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: Novel silicone nanocomposites were prepared using poly(acrylonitrile) (PAN) based reinforcing fibres as well as multi-walled carbon nanotubes (MWCNTs). Compatibility of the fibre fillers with the silicone matrix required the synthesis of novel amphiphilic, organic–inorganic graft copolymers of PAN and poly(dimethylsiloxane) (PAN-g-PDMS). These fibre precursor materials were synthesised via the “grafting through” technique using conventional free radical copolymerisation. The PDMS macromonomer content in the feed was varied from 5 wt% to 25 wt% and the molecular weights of the macromonomer were 1000 g.mol-1 and 5000 g.mol-1. The solvent medium of the precipitation reaction was optimised at a volume ratio of 98% benzene to 2% dimethylformamide (DMF). Successful incorporation of PDMS yielded graft copolymer blend materials of PAN-g-PDMS, blended with PAN homopolymer and unreacted PDMS macromonomer. A gradient elution profile was developed to track the successful removal of the PDMS macromonomer via hexane extraction. The gradient profile showed that as the PDMS content in the feed increased, the number of graft molecules in the blend increased relative to the number of PAN homopolymer molecules. The crystallisability of the PAN segments was shown to decrease as the PDMS content increased. The synthesised polymer was used as precursor material for the electrospinning of fibre fillers. The electrospinning of the precursor material was successfully achieved using 100% DMF as electrospinning solution medium. The amphiphilic nature of the precursor material in DMF resulted in self-assembled aggregate structures in the electrospinning solution. An increasing PDMS content was shown to affect the aggregation of the precursor material, and resulted in an increase in the solution viscosity. The “gel-like” solutions limited the achievable fibre morphological control when altering conventional electrospinning parameters such as voltage, tip-to-collector distance, and solution concentrations. The rapid evaporation and stretching of the solution during electrospinning, combined with the phase segregated amphiphilic molecules in solution and the crystallisation of the PAN segments resulted in (non-equilibrium morphology) fully porous fibres. The crystallinity was shown to decrease after electrospinning of the fibre precursor materials. Successful incorporation of surface oxidised MWCNTs into the electrospun fibres was achieved. The content of nanotubes was varied from 2 wt% to 32 wt%. The MWCNTs reduced the mean fibre diameters by acting as cross-linkers between the PAN segments and increasing the solution conductivity. The nanotubes dispersed well throughout the porous structure of the fibres and aligned in the direction of the fibre axis. Fabrication of silicone composites containing nonwoven and aligned fibre mats (with 8 wt% MWCNTs in the fibres, and without) was successfully achieved. The compatibilisation of the PDMS surface segregated domains allowed excellent dispersion and interaction of the PAN based fibre fillers with the silicone matrix. Mechanical analysis showed improved properties as the PDMS content in the fibre increased. The highest PDMS content fibres did, however, exhibit decreased properties. This was ascribed to increased PDMS (soft and weak) content, decreased crystallinity and increased fibre diameter (lower interfacial area). Dramatic improvements in strength, stiffness, strain and toughness were achieved. The most significant result was an increase in strain of 470%. The mechanical results correlated with results of SEM analysis of the fracture surfaces. The dramatic improvements in properties were a result of the fibre strength and ductility, as well as the mechanism of composite failure.
- ItemPolymer-clay nanocomposites prepared by RAFT-supported grafting(Stellenbosch : Stellenbosch University, 2012-12) Chirowodza, Helen; Pasch, Harald; Hartmann, Patrice C.; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: In materials chemistry, surface-initiated reversible deactivation radical polymerisation (SI-RDRP) has emerged as one of the most versatile routes to synthesising inorganic/organic hybrid materials consisting of well-defined polymers. The resultant materials often exhibit a remarkable improvement in bulk material properties even after the addition of very small amounts of inorganic modifiers like clay. A novel cationic reversible addition–fragmentation chain transfer (RAFT) agent with the dual purpose of modifying the surface of Laponite clay and controlling the polymerisation of monomer therefrom, was designed and synthesised. Its efficiency to control the polymerisation of styrene was evaluated and confirmed through investigating the molar mass evolution and chain-end functionality. The surface of Laponite clay was modified with the cationic chain transfer agent (CTA) via ion exchange and polymerisation performed in the presence of a free non-functionalised CTA. The addition of the non-functionalised CTA gave an evenly distributed CTA concentration and allowed the simultaneous growth of surface-attached and free polystyrene (PS). Further analysis of the free and grafted PS using analytical techniques developed and published during the course of this study, indicated that the free and grafted PS chains were undergoing different polymerisation mechanisms. For the second monomer system investigated n-butyl acrylate, it was apparent that the molar mass targeted and the monomer conversions attained had a significant influence on the simultaneous growth of the free and grafted polymer chains. Additional analysis of the grafted polymer chains indicated that secondary reactions dominated in the polymerisation of the surface-attached polymer chains. A new approach to separating the inorganic/organic hybrid materials into their various components using asymmetrical flow field-flow fractionation (AF4) was described. The results obtained not only gave an indication of the success of the in situ polymerisation reaction, but also provided information on the morphology of the material. Thermogravimetric analysis (TGA) was carried out on the polymer-clay nanocomposite samples. The results showed that by adding as little as 3 wt-% of clay to the polymer matrix, there was a remarkable improvement in the thermal stability.
- ItemReversible addition fragmentation chain transfer (RAFT) mediated polymerization of N-vinylpyrrolidone(Stellenbosch : University of Stellenbosch, 2008-03) Pound, Gwenaelle; Klumperman, Bert; University of Stellenbosch. Faculty of Science. Dept. of Chemistry and Polymer Science.Xanthate-mediated polymerization was investigated as a tool for the preparation of well-defined poly(N-vinylpyrrolidone) and copolymers of N-vinylpyrrolidone. Some results regarding the monomer vinyl acetate are included, mostly for comparison purposes. The structure of the leaving/reinitiating group of the xanthate mediating agent was tuned to match the monomer reactivity. This was achieved by studying the initialization behaviour of monomer-xanthate systems via in situ 1H-NMR spectroscopy. Additionally, the latter technique was valuable to identify side reactions affecting the monomer, xanthate and/or polymeric species. Subsequently, experimental conditions were defined, and used to optimize the level of control achieved during polymerization. Block copolymers were prepared from a xanthate end-functional poly(ethylene glycol) with both vinyl acetate and N-vinylpyrrolidone. Finally, the preparation of poly(N-vinylpyrrolidone) with a range of well-defined end groups was achieved via postpolymerization treatment of the xanthate end-functional polymerization product. 3 different routes were investigated, which lead to poly(N-vinylpyrrolidone) with 1) aldehyde or alcohol, 2) thiol or 3) unsaturated ω-chain-end functionality, in high yield, while the α-chain-end functionality is defined by the structure of the xanthate leaving group. The ω-aldehyde end-functional poly(N-vinylpyrrolidone) was successfully conjugated to the lysine residues of the model protein lysozyme via reductive amination. Particular attention was drawn to characterizing the polymerization products. NMR spectroscopy, liquid chromatographic and mass-spectroscopic techniques were used. The major achievements emerging from polymer analysis carried out in this study included the following: - a library of NMR chemical shifts for N-vinylpyrrolidone derivatives; - an estimation of the critical conditions for poly(N-vinylpyrrolidone) relevant for separation according to the polymer chain-ends; - conditions for the separation of block-copolymers comprising a poly(ethylene glycol) segment and a poly(N-vinylpyrrolidone) or poly(vinyl acetate) segment via liquid chromatography; - valuable results on matrix-assisted laser ionization-desorption time-of-flight mass spectroscopy (MALDI-ToF-MS) of poly(N-vinylpyrrolidone).
- ItemSynthesis and characterization of multiphase copolymers(Stellenbosch : Stellenbosch University, 2011-12) Elhrari, Wael K. S.; Mallon, P. E.; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: Multiphase copolymers generally consist of copolymers where the disparate natures of each of the segments results in complex phase-segregated morphologies in the solid state. The outstanding properties and wide range of applications of multiphase copolymers has led to the need for more sophisticated synthesis methods to produce copolymers with controlled structures. Associated with developments in synthetic methods is the need to develop suitable techniques to characterize these materials in order to obtain a better understanding of their structure–property relationships. The synthesis of multiphase copolymers presents many challenges. These are related to the nature of the molecular requirements, were the monomers of each of the different components may not be polymerized by all available polymerization techniques. This has led to the need to combine different polymerization techniques to overcome such limitations. The focus of this study is the combination of living controlled polymerization techniques, namely anionic polymerization and RAFT polymerization, with hydroboration/autoxidation, to produce non-polyolefin block and graft copolymers. Block copolymers were synthesized by coupling anionic polymerization and hydroboration/autoxidation reactions. The first block segment was prepared via anionic polymerization, and then end-functionalized with a suitable functional group (e.g. an allyl group). A hydroboration/autoxidation reaction was then used to initiate the polymerization of the second block by the slow addition of oxygen at room temperature. Graft copolymers were synthesized using the 'grafting from' technique, by coupling RAFT copolymerization with hydroboration/autoxidation reactions. The backbone polymer was synthesized via RAFT copolymerization of symmetric and asymmetric monomer, after which a hydroboration/autoxidation reaction was carried out to produce graft copolymers. The hydroboration/hydroxylation reaction could also be used to modify an unsaturated polymer chain. The EPDM rubber chain was modified by transforming the double bond into an hydroxyl group, which could undergo an esterification reaction with an acid chloride RAFT agent to produce the multifunctional RAFT polymer. This was used for the controlled living free radical polymerization of the graft chains. Significant amounts of homopolymerization in addition to graft formation were obtained. Solid state NMR (SS NMR) and positron annihilation lifetime spectroscopy were used to determine the compositional phase segregation point in the graft copolymers. The spin diffusion data from the SS NMR provided insight into the seemingly anomalous positron data at the phase segregation point. It is demonstrated how these two techniques can provide complimentary data on the solid state morphology of these multiphase materials.
- ItemUse of the RAFT technique as an efficient method to synthesise well defined polymer-clay nanocomposites with improved properties(Stellenbosch : University of Stellenbosch, 2009-03) Samakande, Austin; Sanderson, R. D.; Hartmann, P. C.; University of Stellenbosch. Faculty of Science. Dept. of Chemistry and Polymer Science.Synthesis and structural characterization of two novel cationic and three new neutral reversible addition–fragmentation chain transfer (RAFT) agents is described. The cationic RAFT agents bear a quaternary ammonium group: N,N-dimethyl-N-(4- (((phenylcarbonothionyl)thio)methyl)benzyl)ethanammonium bromide (PCDBAB) and N-(4-((((dodecylthio)carbonothioyl)thio)methyl)benzyl)-N,N-dimethylethanammonium bromide (DCTBAB). The three neutral RAFT agents synthesized are 1,4- phenylenebis(methylene)dibenzene carbodithioate (PCDBDCP), didodecyl-1,4- phenylenebis(methyllene)bistrithiocarbonate (DCTBTCD) and 11-(((benzylthio)carbonothioyl) thio)undecanoic acid (BCTUA). The self-assembly behaviour in diluted aqueous solutions of the cationic RAFT agents, PCDBAB and DCTBAB, is described. The self-assembly behaviour was promoted by the presence of the thiocarbonyl- thio group on the RAFT agents, in addition to the overall chemical structure of the surfactant that also influence self-assembly. The RAFT agents were used for the bulk or miniemulsion RAFT-mediated controlled free-radical polymerization in the presence of clay to yield polymer–clay nanocomposites (PCNs). Bulk polymerization resulted in PCNs with better control of molar mass and polydispersity index (PDI) values when compared to PCNs prepared by miniemulsion polymerization. In both bulk and miniemulsion polymerizations the molar masses and PDI values were dependent on the amount of clay and RAFT agent present in the system. Free-radical bulk neutral RAFT agent-mediated polymerization resulted in PCNs with predominantly intercalated morphology. This was attributed to radical–radical coupling of the initiator anchored onto the clay galleries on which polymerization took place. On the other hand, when the cationic RAFT agent anchored onto clay, i.e. RAFT-modified clay was used, bulk polymerization resulted in predominantly exfoliated PCNs. However, miniemulsion polymerization carried out in the presence of the RAFT-modified clays resulted in PCNs with a morphology that ranged from partially exfoliated to intercalated morphology, as the clay loading was increased. The changing morphology for miniemulsion-based PCNs was attributed to the decreasing molar mass as the clay loading was increased. The PCNs obtained had enhanced thermo-mechanical properties as a result of the presence of clay. The thermo-mechanical properties depended on the molar mass, PDI, clay loading, and the morphology of the PCNs.