Masters Degrees (Chemistry and Polymer Science)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Chemistry and Polymer Science) by Subject "Alcohol oxidation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemImmobilized diimine complexes of palladium and copper as catalyst precursors for oxidation reactions(Stellenbosch : University of Stellenbosch, 2011-03) Kotze, Hendrik de Vries; Mapolie, Selwyn; University of Stellenbosch. Faculty of Engineering. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: In this thesis the synthesis of a wide range of model and siloxane functionalized N-(n-propyl)-1-(2-pyridyl and quinolyl)-imine ligands (L1-L6) are described. Functionalized ligands (L4-L6) were obtained by the reaction of the pyridyl and quinolyl aldehydes with 3-aminopropyltriethoxysilane. Model ligands were characterized by FT-IR and 1H NMR spectroscopy while 13C{1H} NMR spectroscopy was additionally used for functional ligand characterization. Functionalized complexes of both Pd(II) and Cu(I) were found to be more thermally stable than their model counterparts. Overall the model Pd(II) complexes showed a higher thermal stability than the model Cu(I) complexes. Ligands (L1-L6) were reacted with either Pd(II) or Cu(I) metal precursors to produce both the model and functionalized Pd(II) (C1-C6) and Cu(I) (C7-C12) metal complexes. These metal complexes were all characterized by FT-IR spectroscopy, 1H NMR and UV/Vis spectroscopy for the model Cu(I) complexes. Functionalized complexes were additionally characterized with 13C{1H} NMR spectroscopy. Siloxane functionalized complexes of Pd(II) and Cu(I) were immobilized on MCM-41 and SBA-15 silica materials to produce heterogenized immobilized catalysts. These immobilized catalysts were characterized by a wide range of solid state techniques including: BET nitrogen adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), ICP-AES, FT-IR spectroscopy, powder XRD and solid state 13C{1H} NMR spectroscopy. ICP-AES and BET surface analysis showed that better complex immobilization occurred for SBA-15 supported materials despite SBA-15 having a significantly lower surface area than MCM-41. This higher immobilization was ascribed to the larger pore sizes of SBA-15 (50 Å) vs. that of MCM-41 (26 Å). Immobilized catalysts were tested for the oxidation of benzyl alcohol to benzaldehyde. Immobilization had a positive effect on the catalytic activity of the Pd(II) complexes with higher conversions being observed for immobilized Pd(II) catalysts when compared to their model analogues. Overall the MCM-41 immobilized Pd(II) catalysts showed a higher increase in activity than SBA-15 immobilized catalysts. For Ti-doped supports a generally higher activity was seen for the Ti-SBA-15 system. The Cu(I) systems however were not as effective in the oxidation reactions.