Masters Degrees (Chemistry and Polymer Science)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Chemistry and Polymer Science) by Subject "Alcohol -- Oxidation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemPreparation, characterization and applications of macrocycle-dendrimer conjugates(Stellenbosch : Stellenbosch University, 2013-12) Wilbers, Derik; Mapolie, S. F.; Luckay, Robert C.; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: In this thesis we describe various attempts at incorporating macrocycles into dendritic architectures to form macrocycle-dendrimer conjugates with the aim of preparing materials that would exhibit properties that are more than the sum of the constituent parts, in this case macrocycles and dendrimers. A further aim was the synthesis and characterization of metallodendrimers based on such scaffolds and to test these as catalyst precursors in the catalytic oxidation of alcohols. The synthesis of two different types of conjugate systems was attempted; viz. dendrimers functionalized with macrocycles on the peripheries and dendrimers with macrocyclic cores. The synthesis of conjugate systems based on cyclam as the macrocycle was attempted. This required the mono functionalization of cyclam with a linker molecule capable of further reaction with the functional groups at the periphery of commercially available N,N,N,N-tetrakis(3-aminopropyl)-1,4-butanediamine dendrimer. Several approaches were taken in trying to make such conjugate systems but they were not entirely successful. One of the major issues was the final deprotection step, of the Boc-protected cyclam units which proved difficult in our hands. Another approach to prepare the target conjugates involved the use of click chemistry in order to synthesize a dendrimer with an aromatic core and cyclam peripheries. A dendrimer with Boc-protected cyclam peripheries that are bonded through triazole groups to the aromatic core was synthesized. However, subsequent attempts at de-protection of the cyclam functionalities of this conjugate failed to yield the pure de-protected dendrimer. Greater success was achieved with the preparation of a dendrimer with a macrocyclic core. A cyclam cored dendrimer with salicylaldimine peripheries was successfully synthesized and characterized. This dendritic ligand was complexed to Cu(II), Ni(II) and Zn(II) metal ions respectively to form a series of new metallodendrimers. These metallodendrimers were fully characterized using a range of analytical techniques including FT-IR spectroscopy, mass spectrometry, elemental analysis, thermogravimetric analysis, magnetic susceptibility measurements and NMR spectroscopy where appropriate. The Cu(II) and Ni(II) metallodendrimers were tested as catalyst precursors in the catalytic oxidation of benzyl alcohol to benzaldehyde. The catalytic system consisted of the appropriate metallodendrimer, the free radical, 2,2,6,6-tetramethylpiperidinyl- 1-oxyl (TEMPO) and O2 as the oxidant. The reaction parameters, namely the nature of the solvent, catalyst loading, substrate concentration and reaction temperature were sequentially optimized to achieve the best catalytic efficiency. The Cu(II) catalyst precursor exhibited relatively high catalytic activity and achieved TOF’s between 40 and 30 when operating under the optimized conditions, while the Ni(II) catalytic system showed very poor catalytic activity.