Research Articles (Medical Microbiology)
Permanent URI for this collection
Browse
Browsing Research Articles (Medical Microbiology) by Subject "Anti-infective agents"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAssociation between fluoroquinolone resistance and MRSA genotype in Alexandria, Egypt(Nature, 2021-02-19) Alseqely, Mustafa; Newton-Foot, Mae; Khalil, Amal; El-Nakeeb, Mostafa; Whitelaw, Andrew; Abouelfetouh, AlaaAntimicrobial stewardship isn’t strictly observed in most Egyptian hospitals, raising antibiotic resistance. Epidemiology of Egyptian MRSA isolates, or associations with resistance to other antibiotics remain largely unknown. We identified MRSA genotypes in Alexandria Main University Hospital (AMUH) and investigated rates of moxifloxacin resistance, an alternative MRSA treatment, among different genotypes. Antibiotic susceptibility of 72 MRSA clinical isolates collected in 2015 from AMUH was determined by disc diffusion and broth microdilution. spa- and Staphylococcal Cassette Chromosome mec (SCCmec) typing were performed; with multi-locus sequence typing conducted on isolates representing major genotypes. Resistance to moxifloxacin, levofloxacin and ciprofloxacin were 69%, 78% and 96%, respectively. spa type t037 (57%) was commonest, followed by t127 (12.5%), t267 (8%) and t688 (6%). SCCmec III predominated (57%), all of these were moxifloxacin resistant and 97.6% t037 (ST241). SCCmec IV, IV E and V represented 15%, 7% and 11% of the isolates, respectively, 79% of these were moxifloxacin susceptible and of different spa types. t127 (ST-1) was associated with SCCmec V in 56% of the isolates, mostly moxifloxacin susceptible. Moxifloxacin resistance was high, most resistant isolates belonged to t037 and SCCmec III, suggesting local dissemination and antibiotic pressure. We recommend caution in treating MRSA infections with moxifloxacin.
- ItemFirst report of Wohlfahrtiimonas chitiniclastica bacteraemia in South Africa(Health & Medical Publishing Group, 2016) Hoffman, R.; Fortuin, F.; Newton-Foot, M.; Singh, S.ENGLISH ABSTRACT: No abstract available
- ItemIn vitro activity of tigecycline and comparators against Gram-positive and Gram-negative isolates collected from the Middle East and Africa between 2004 and 2011(Elsevier, 2014) Kanj, Souha; Whitelaw, Andrew; Dowzicky, Michael J.The Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) was established in 2004 to monitor longitudinal changes in bacterial susceptibility to numerous antimicrobial agents, specifically tigecycline. In this study, susceptibility among Gram-positive and Gram-negative isolates between 2004 and 2011 from the Middle East and Africa was examined. Antimicrobial susceptibilities were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria, and minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. US Food and Drug Administration (FDA)-approved breakpoints were used for tigecycline. In total, 2967 Gram-positive and 6322 Gram-negative isolates were examined from 33 participating centres. All Staphylococcus aureus isolates, including meticillin-resistant S. aureus, were susceptible to tigecycline, linezolid and vancomycin. Vancomycin, linezolid, tigecycline and levofloxacin were highly active (>97.6% susceptibility) against Streptococcus pneumoniae, including penicillin-non-susceptible strains. All Enterococcus faecium isolates were susceptible to tigecycline and linezolid, including 32 vancomycin-resistant isolates. Extended-spectrum β-lactamases were produced by 16.6% of Escherichia coli and 32.9% of Klebsiella pneumoniae. More than 95% of E. coli and Enterobacter spp. were susceptible to amikacin, tigecycline, imipenem and meropenem. The most active agents against Pseudomonas aeruginosa and Acinetobacter baumannii were amikacin (88.0% susceptible) and minocycline (64.2% susceptible), respectively; the MIC90 (MIC required to inhibit 90% of the isolates) of tigecycline against A. baumannii was low at 2 mg/L. Tigecycline and carbapenem agents were highly active against most Gram-negative pathogens. Tigecycline, linezolid and vancomycin showed good activity against most Gram-positive pathogens from the Middle East and Africa.
- ItemThe prevalence and molecular mechanisms of mupirocin resistance in Staphylococcus aureus isolates from a Hospital in Cape Town, South Africa(BMC (part of Springer Nature), 2020-03-14) Abdulgader, Shima M.; Lentswe, Tshepiso; Whitelaw, Andrew; Newton-Foot, MaeAbstract Background: Antimicrobial resistance is an increasingly serious problem in public health globally. Monitoring resistance levels within healthcare and community settings is critical to combat its ongoing increase. This study aimed to describe the rates and molecular mechanisms of mupirocin resistance in clinical Staphylococcus aureus isolates from Tygerberg Hospital, and to describe its association with strain types. Methods: We retrospectively selected 212 S. aureus isolates which were identified from blood samples and pus swabs during the years 2009–2011 and 2015–2017. The isolates were identified using conventional microbiological methods and genotyping was done using spa typing. Cefoxitin (30 μg) disc diffusion and the two disc strategy (5 μg and 200 μg) were used to determine susceptibility to methicillin and mupirocin, respectively. Isolates with high-level resistance were screened for the plasmid mediated genes mupA and mupB by PCR, and sequencing of the ileS gene was done for all isolates exhibiting low-level resistance to describe the mutations associated with this phenotype. Chi-square test was used to assess the associations between mupirocin resistance and S. aureus genotypes. Results: Of 212 S. aureus isolates, 12% (n = 25) were resistant to mupirocin, and 44% (n = 93) were methicillin resistant. Strain typing identified 73 spa types with spa t045 being the most predominant constituting 11% of the isolates. High-level mupirocin resistance was observed in 2% (n = 5), and low-level resistance in 9% (n = 20) of the isolates. The prevalence of high-level mupirocin resistance amongst MRSA and MSSA was 4 and 1% respectively, while the prevalence of low-level mupirocin resistance was significantly higher in MRSA (18%) compared to MSSA (3%), (p = 0.032). mupA was the only resistance determinant for high-level resistance, and the IleS mutation V588F was identified in 95% of the isolates which showed low-level resistance. A significant association was observed between spa type t032 and high-level mupirocin resistance, and types t037 and t012 and low-level resistance (p < 0.0001). Conclusion: The study reported higher rates of low-level mupirocin resistance compared to high-level resistance, and in our setting, mupirocin resistance was driven by certain genotypes. Our study advocates for the continuous screening for mupirocin resistance in S. aureus in clinical settings to better guide treatment and prescribing practices. Background Antimicrobial resistance is an increasingly serious problem in public health globally. Monitoring resistance levels within healthcare and community settings is critical to combat its ongoing increase. This study aimed to describe the rates and molecular mechanisms of mupirocin resistance in clinical Staphylococcus aureus isolates from Tygerberg Hospital, and to describe its association with strain types. Methods We retrospectively selected 212 S. aureus isolates which were identified from blood samples and pus swabs during the years 2009–2011 and 2015–2017. The isolates were identified using conventional microbiological methods and genotyping was done using spa typing. Cefoxitin (30 μg) disc diffusion and the two disc strategy (5 μg and 200 μg) were used to determine susceptibility to methicillin and mupirocin, respectively. Isolates with high-level resistance were screened for the plasmid mediated genes mupA and mupB by PCR, and sequencing of the ileS gene was done for all isolates exhibiting low-level resistance to describe the mutations associated with this phenotype. Chi-square test was used to assess the associations between mupirocin resistance and S. aureus genotypes. Results Of 212 S. aureus isolates, 12% (n = 25) were resistant to mupirocin, and 44% (n = 93) were methicillin resistant. Strain typing identified 73 spa types with spa t045 being the most predominant constituting 11% of the isolates. High-level mupirocin resistance was observed in 2% (n = 5), and low-level resistance in 9% (n = 20) of the isolates. The prevalence of high-level mupirocin resistance amongst MRSA and MSSA was 4 and 1% respectively, while the prevalence of low-level mupirocin resistance was significantly higher in MRSA (18%) compared to MSSA (3%), (p = 0.032). mupA was the only resistance determinant for high-level resistance, and the IleS mutation V588F was identified in 95% of the isolates which showed low-level resistance. A significant association was observed between spa type t032 and high-level mupirocin resistance, and types t037 and t012 and low-level resistance (p < 0.0001). Conclusion The study reported higher rates of low-level mupirocin resistance compared to high-level resistance, and in our setting, mupirocin resistance was driven by certain genotypes. Our study advocates for the continuous screening for mupirocin resistance in S. aureus in clinical settings to better guide treatment and prescribing practices.