Research Articles (Soil Science)
Permanent URI for this collection
Browse
Browsing Research Articles (Soil Science) by Subject "Chemical oxygen demand"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemEffect of irrigation using diluted winery wastewater on the chemical status of a sandy alluvial soil, with particular reference to potassium and sodium(South African Society for Enology and Viticulture, 2018) Howell, C. L.; Myburgh, P. A.; Lategan, E. L.; Hoffman, J. E.The re-use of winery wastewater for irrigation was investigated in a field trial with micro-sprinklerirrigated Cabernet Sauvignon/99 Richter in the Breede River Valley region of South Africa. Irrigation with winery wastewater diluted with river water to 100, 250, 500, 1 000, 1 500, 2 000, 2 500 and 3 000 mg/L chemical oxygen demand (COD) was compared to irrigation with river water. No trends were found in soil pH(KCl) and electrical conductivity of the saturated soil extract (ECe ) that were related to the different levels of dilution. However, ECe was considerably higher after the application of diluted winery wastewater irrigations compared to ECe at bud break. This suggests an accumulation of salts from the diluted winery wastewater. Under the prevailing conditions, soil K+ and Na+ increased with a decrease in the dilution of the winery wastewater. Increases in K+ could have a negative impact on wine colour stability should potassium be taken up by the grapevine in sufficient quantities, particularly if soil K+ accumulates to such an extent that it is luxuriously absorbed by grapevines. There were no consistent trends with regard to soil organic C, which indicates that there was too little organic material in the wastewater to have had a positive effect on soil fertility. Furthermore, organic material in the wastewater probably oxidised when the soil was aerated between irrigations. Although irrigation with diluted winery wastewater had almost no other effects, element accumulation, particularly with respect to K+ and Na+, might be more prominent in heavier soils or in regions with low winter rainfall.
- ItemEffect of irrigation using diluted winery wastewater on vitis vinifera l. cv. cabernet sauvignon in a sandy alluvial soil in the Breede River Valley – vegetative growth, yield and wine quality(South African Society for Enology and Viticulture, 2016-09) Howell, C. L.; Myburgh, P. A.; Lategan, E. L.; Schoeman, C.; Hoffman, J. E.The re-use of winery wastewater for irrigation was investigated in a field trial with micro-sprinklerirrigated Cabernet Sauvignon/99Richter in the Breede River Valley region of South Africa. Irrigation with winery wastewater diluted with river water to 100, 250, 500, 1 000, 1 500, 2 000, 2 500 and 3 000 mg/L chemical oxygen demand (COD) was compared to irrigation with river water. Under the prevailing conditions, plant water status did not respond to irrigation using diluted winery wastewater. Leaf and shoot element contents did not respond consistently to irrigation using diluted winery wastewater. There were no differences in vegetative growth or yield or juice characteristics, with the exception of juice pH. Consequently, water use and water status of the grapevines also were not affected. The results indicate that a summer interception crop may increase the evapotranspiration of vineyards substantially. The irrigation of grapevines using diluted winery wastewater did not have detrimental effects on wine colour and sensory wine characteristics, and the grapevines did not respond to the COD level per se. This indicates that sufficient aeration occurred between irrigations, which allowed organic carbon breakdown. The low salinity and sodicity levels in the diluted winery wastewater could be a further explanation of why the grapevines did not respond to the wastewater irrigation. In heavier soils, regions with lower winter rainfall, situations where the winery wastewater contains more potassium or where no interception crop is cultivated during summer, grapevine responses may be more pronounced.
- ItemEffect of irrigation with diluted winery wastewater on phosphorus in four differently textured soils(South African Society for Enology and Viticulture, 2016-04) Mulidzi, A. R.; Clarke, C. E.; Myburgh, P. A.The wine industry needs solutions for wastewater treatment, as environmental legislation for its disposal is increasingly being enforced due to non-compliance. The feasibility of re-using diluted winery wastewater was assessed in a pot experiment under a rain shelter over four simulated irrigation seasons. Four soils varying in parent material and clay content, viz. aeolic sand from Lutzville containing 0.4% clay, alluvial sand from Rawsonville containing 3.3% clay, granite-derived soil from Stellenbosch containing 13% clay, and shale-derived soil from Stellenbosch containing 20% clay, were irrigated with wastewater diluted to 3 000 mg/L COD (chemical oxygen demand), whereas the control received municipal water. Irrigation with diluted winery wastewater increased the pH(KCl) in the shale- and granite-derived soils into the optimum range for P availability. Although pH(KCl) in the aeolic sand was initially above the optimum range, relatively high Na+ levels also caused available P to increase as the pH(KCl) increased. The pH(KCl) in the alluvial sand increased beyond the optimum range, thereby causing a reduction in the available P. This indicates that irrigation with diluted winery wastewater may only enhance P absorption if the pH(KCl) shift is towards the optimum. It must be noted that the results represent a worst-case scenario, i.e. in the absence of rainfall or crops.
- ItemSeasonal variation in composition of winery wastewater in the Breede River Valley with respect to classical water quality parameters(South African Society for Enology and Viticulture, 2016-10) Howell, C. L.; Myburgh, P. A.; Lategan, E. L.; Hoffman, J. E.The annual wastewater quality dynamics of a winery from which wastewater was sourced for a field experiment investigating the dilution of winery wastewater for vineyard irrigation were determined. Annual mean monthly pH ranged from 4.2 to 6.8 and was lower during grape harvest than in winter. Electrical conductivity (EC) increased from the start of harvest (February) and reached a maximum in May, followed by a decline to a minimum in August. The increase in EC probably originated from cleaning agents used in the winery, as well as K+ in the grape lees and spillage from the grape fermentation process. With the exception of August, EC exceeded the critical value of 0.75 dS/m, which is the salinity threshold for water used for grapevine irrigation. The mean monthly chemical oxygen demand (COD) level increased from January and was highest at peak harvest (March). The K+ and Na+ levels in the winery wastewater increased from February to May. The sodium adsorption ratio (SAR) ranged from 2.4 to 9.0 and increased from January to June. Although COD concentration in winery wastewater is the preferred indicator of water quality for the South African wine industry, it did not provide a reliable indication of suitability for irrigation. However, EC was strongly determined by the K+ concentration. This was to be expected, since K+ is usually the most abundant cation in winery wastewater. Therefore, EC would be a more reliable indicator of winery wastewater quality than COD concentration, particularly with regard to the concentrations of cations such as K+ and Na+.