Research Articles ((SACEMA) South African Centre for Epidemiological Modelling and Analysis )
Permanent URI for this collection
Browse
Browsing Research Articles ((SACEMA) South African Centre for Epidemiological Modelling and Analysis ) by Subject "African trypanosomiasis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemModeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock(Public Library of Science, 2012-05) Hargrove, John W.; Ouifki, Rachid; Kajunguri, Damian; Vale, Glyn A.; Torr, Stephen J.Abstract Background: In Uganda, Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, and animal trypanosomiasis caused by T. vivax and T. congolense, are being controlled by treating cattle with trypanocides and/or insecticides. We used a mathematical model to identify treatment coverages required to break transmission when host populations consisted of various proportions of wild and domestic mammals, and reptiles. Methodology/Principal Findings: An Ro model for trypanosomiasis was generalized to allow tsetse to feed off multiple host species. Assuming populations of cattle and humans only, pre-intervention Ro values for T. vivax, T. congolense, and T. brucei were 388, 64 and 3, respectively. Treating cattle with trypanocides reduced R0 for T. brucei to ,1 if .65% of cattle were treated, vs 100% coverage necessary for T. vivax and T. congolense. The presence of wild mammalian hosts increased the coverage required and made control of T. vivax and T. congolense impossible. When tsetse fed only on cattle or humans, R0 for T. brucei was ,1 if 20% of cattle were treated with insecticide, compared to 55% for T. congolense. If wild mammalian hosts were also present, control of the two species was impossible if proportions of non-human bloodmeals from cattle were ,40% or ,70%, respectively. R0 was ,1 for T. vivax only when insecticide treatment led to reductions in the tsetse population. Under such circumstances R0,1 for T. brucei and T. congolense if cattle make up 30% and 55%, respectively of the non-human tsetse bloodmeals, as long as all cattle are treated with insecticide. Conclusions/Significance: In settled areas of Uganda with few wild hosts, control of Rhodesian sleeping sickness is likely to be much more effectively controlled by treating cattle with insecticide than with trypanocides.
- ItemTowards an early warning system for Rhodesian sleeping sickness in Savannah Areas : man-like traps for tsetse flies(Public Library of Science, 2012-12) Vale, Glyn A.; Hall, David R.; Chamisa, Andrew; Torr, Stephen J.Background: In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts. Methodology/Principal Findings: In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men. Conclusion/Significance: Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study.