Doctoral Degrees (Medical Physiology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Medical Physiology) by Subject "Beta-adrenergic"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe mechanism of pharmacological preconditioning of rat myocardium with beta-adrenergic agonists(Stellenbosch : University of Stellenbosch, 2011-03) Salie, Ruduwaan; Lochner, Amanda; Moolman, J. A.; University of Stellenbosch. Faculty of Health Sciences. Dept. of Biomedical Sciences. Medical physiologyENGLISH ABSTRACT: The Mechanism of -adrenergic preconditioning ( -PC) Ischaemic preconditioning (IPC), a potent endogenous protective intervention against myocardial ischaemia, is induced by exposure of the heart to repetitive short episodes of ischaemia and reperfusion. The protective effects of this phenomenon have been demonstrated to be mediated by release of autocoids such as adenosine, opioids and bradykinin. Release of endogenous catecholamines and activation of the beta-adrenergic receptors (b-AR) have also been shown to be involved in ischaemic preconditioning. However, the exact mechanism whereby activation of the - adrenergic signal transduction pathway leads to cardioprotection, is still unknown. In view of the above, the aims of the present study were to evaluate: (i) the respective roles of the 1-, 2- and 3-AR receptors as well as the contribution of Gi protein and PKA to -adrenergic preconditioning, (ii) the role of the prosurvival kinases, PKB/Akt and ERK 44/p42 MAPKinase in -drenergic preconditioning, (iii) whether b-AR stimulation protect via ischaemia and the formation of adenosine; the respective roles of the A1-, A2-, A3-adenosine receptors as well as the involvement of the PI3-K/PKB/Akt and ERKp44/p42 signal transduction pathways, in the cardioprotective phenomemon of -adrenergic preconditioning and (iv) the contribution of the mitochondrial KATP channels (mKATP), reactive oxygen species and NO to the mechanism of -AR-induced cardioprotection. Methods: Isolated perfused rat hearts were subjected to 35 min regional ischaemia (RI) and reperfusion. Infarct size (IS) was determined using tetrazolium staining (TTC) and data were analyzed with ANOVA. Hearts were preconditioned with 5 min isoproterenol 0.1 μM ( 1/ 2-AR agonist), or formoterol 1 nM ( 2-AR agonist) or BRL 37344 1 μM ( 3-AR agonist) followed by 5 min reperfusion. The roles of the 1-, 2- and 3-ARs as well as NO were explored by using the selective antagonists CGP-20712A (300 nM), ICI -18551 (50 nM), SR59230A (100 nM) and NOS inhibitors L-NAME (50 μM) or LNNA (50 μM) respectively. Involvement of ROS and the mK+ ATP channels was studied by administration of N-acetyl cysteine (NAC, 300 μM) and the mitK+ ATP iv channel blocker 5-HD (100 μM) during the triggering phase. The role of PKA and PI3-K/Akt was investigated by the administration of the blockers Rp-8-CPT-cAMPs (16 μM) and wortmannin (100 nM) respectively, prior to RI or at the onset of reperfusion. Pertussis toxin (PTX), 30 μg kg-1 was administered i.p., 48 h prior to experimentation. The role of adenosine and the adenosine A1, A3, A2A and A2B receptors was studied by using adenosine deaminase and the selective antagonists DPCPX (1 μM), MRS 1191(1 μM), ZM241385 (1 μM) and MRS1754 (1 μM). Activation of PKB/Akt and ERKp44/p42 was determined by Western blot. Results: Infarct sizes of hearts preconditioned with isoproterenol of formoterol were significantly smaller compared to those of non-preconditioned hearts. This was associated with an improvement in postischaemic mechanical performance. However the 3-AR agonist BRL37344 could not reduce infarct size. The 1- and 2-AR blockers CGP-20712A and ICI-118551 completely abolished the isoproterenol-induced reduction in infarct size and improvement in mechanical recovery, while the 3-AR blocker was without effect. Both Rp-8-CPT-cAMPs and wortmannin significantly increased infarct size when administered before 1/ 2-AR preconditioning or at the onset of reperfusion while it reduced mechanical recovery during reperfusion. PTX pretreatment had no significant effect on the reduction in infarct size induced by 1/ 2-AR or 2-AR preconditioning, however it reduced mechanical recovery in the latter. The NOS inhibitors had no effect on the reduction in infarct size induced by 1/ 2-AR preconditioning, but depressed mechanical function during reperfusion. The significant reduction in infarct size by 1/ 2-PC, was associated with activation of ERKp44/p42 and PKB/Akt during the triggering phase, as well as during reperfusion. DPCPX (A1-AdoR antagonist) had no effect on the 1/ 2-PC-induced reduced infarct size or ERK p44/p42 and PKB activation. A2A-AdoR, but not A2b-AdoR, blockade during the trigger phase abolished the reduction in infarct size of 1/ 2-PC. Both antagonists significantly reduced ERK and PKB activation in the trigger phase. In addition, when applied at the onset of reperfusion they significantly reduced ERK p44 / v p42 MAPK and PKB/Akt activation to an even greater extent. MRS-1191 (A3-AdoR antagonist) blocked 1/ 2-PC when applied prior to index ischaemia or when added during early reperfusion, significantly inhibiting both ERK p44 and PKB activation. Cardioprotection of 1/ 2-PC was abolished by inhibition of ROS generation with NAC in the triggering phase as well as at the start of reperfusion. However, the mitoK+ ATP channel blocker 5- HD was without effect. Conclusions: Protection afforded by an acute transient stimulation of the -ARs, depends on the activation of both 1-AR and 2-ARs but not the 3-AR. PKA as well as PI3-K activation prior to sustained ischemia and at the onset of reperfusion were essential for cardioprotection. With functional recovery as endpoint, it appears that NO is involved in 1/ 2-AR preconditioning, while the Gi protein may play a role in 2-AR preconditioning. The production of endogenous adenosine induced by transient b1/b2 stimulation of the isolated rat heart is involved in b−AR preconditioning. Cardioprotection was shown not to be dependent on the A1AdoR while activation of the A3-AdoR occurs during both the triggering and mediation phases. Both the adenosine A2A and, to a lesser extent, the adenosine A2B receptors participate in the triggering phase of b1/b2-PC. Generation of ROS during the triggering and reperfusion phases is involved in eliciting protection, but no role for the mKATP channels could be demonstrated. Finally, activation of the RISK pathway (PKB/Akt and ERKp44/p42) during the triggering phase is a prerequisite for protection. In addition, cardioprotection by b-AR is characterized by activation of the RISK pathway during reperfusion.