Information Technology
Permanent URI for this community
Browse
Browsing Information Technology by Subject "Dissertations -- Mechanical engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA MEMS based valveless micropump for biomedical applications(Stellenbosch : University of Stellenbosch, 2010-03) Van der Merwe, Schalk Willem; Groenwold, A. A.; Thiart, G. D.; Loveday, P. W.; University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: The valveless micropump holds great potential for the biomedical community in applications such as drug delivery systems, blood glucose monitoring and many others. It is also a critical component in many a lab-on-a-chip device, which in turn promises to improve our treatment and diagnosis capabilities for diseases such as diabetes, tuberculosis, and HIV/AIDS. The valveless micropump has attracted attention from researchers on the grounds of its simple design, easy manufacturability and sensitive fluid handling characteristics, which are all important in biomedical applications. The pump consists of a pump chamber with a diffuser and nozzle on opposing sides of the pump chamber. The flow into the diffuser and nozzle is induced by an oscillating piezoelectric disc located on top of the pump chamber. The nozzle and diffuser rectify the flow in one direction, due to different pressure loss coefficients. The design process however is complex. In this study, we investigate the characteristics of a diffuser / nozzle based micropump using detailed computational fluid dynamic (CFD) analyses. Significant parameters are derived using the Buckingham-Pi theorem. In part based on this, the respective shapes of the diffuser and of the nozzle of the micropump are selected for numerical investigation. Hence the influence of the selected parameters on the flow rate of the micropump is studied using three-dimensional transient CFD analyses. Velocity profiles from the CFD simulations are also compared to the Jeffery-Hamel solution for flow in a wedge shaped channel. Significant similarities exist between the data and the predicted Jeffery-Hamel velocity profiles near the exit of the diffuser. Three different diffuser geometries were simulated at three frequencies. The flow rate and direction of flow are shown to be highly sensitive to inlet and outlet diffuser shapes, with the absolute flow rate varying by as much as 200% for the geometrical perturbations studied. Entrance losses at both the diffuser inlet and nozzle inlet appear to dominate the flow resistance at extremely laminar flow conditions with the average Reynolds number of Reave ≈ 500.
- ItemModelling subject-specific patellofemoral joint dynamics(Stellenbosch : University of Stellenbosch, 2010-12) Muller, Jacobus Hendrik; Scheffer, C.; Elvin, A.; University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: A methodology to facilitate analysis of dynamic subject-specific patellofemoral function is presented. An enhanced understanding of patellofemoral biomechanics will enable orthopaedic surgeons to identify the mechanisms responsible for imbalances in the joint stabilisers, while also providing objective information on which to base treatment methods. Dynamic patellofemoral function of three volunteers was simulated with a musculoskeletal computational model. The individuals underwent scans from which three-dimensional models of their patellofemoral joints were constructed. Skeletal muscles and soft tissue stabilisers were added to the skeletal models, after which subject-specific motion was simulated. After trochlear engagement, the patellae of the volunteers followed a lateral path, whereas patella tilt was subject-specific. Comparison of the predicted tilt and mediolateral position values at 30 degrees knee flexion to in-vivo MRI values showed a mean accuracy of 62.1 % and 96.9 % respectively. The patellofemoral contact load . quadriceps tendon load ratio varied between 0.7 and 1.3, whereas the mediolateral load component . resultant load ratio ranged between 0 and 0.4. Both parameters. values were similar to previous findings. The medial patellofemoral ligament tension decreased with knee flexion, while the patellar tendon-quadriceps tendon ratio followed a similar trend to that of previous findings (varied between 0.4 and 1.2). After induction of a tubercle osteotomy in the coronal plane, Volunteer One.s patella engaged the trochlear groove at an earlier knee flexion angle, while the patella of Volunteer Two only underwent a small medial displacement. Finite element analyses were employed to investigate the influence of the osteotomy on the patellofemoral pressure distribution. The mean pressure in Volunteer One.s patellofemoral joint was alleviated (17 % smaller) at all angles of flexion with the exception of 60 degrees (12 % greater). Pressure in Volunteer Two.s joint was alleviated at 30 and 45 degrees knee flexion (6 % smaller), while it was elevated (9.1 % greater) at other angles of flexion. Two commercial patellofemoral prostheses were tested on the three Volunteers. joints in the virtual environment. Prosthesis Two delivered patella shift and tilt patterns similar to the baseline values. Patellar tendon tension was slightly greater after resurfacing, with the tensions elevated most with Prosthesis Two. Medial patellofemoral ligament tension was reduced most with Prosthesis Two, while lateral retinaculum tension was increased slightly. Prosthesis Two was the best candidate to reproduce patella kinematics, while the patellofemoral kinetics was largely independent from the type of prosthesis used. The prostheses performed worse for Volunteer Three, supporting the need for the development of patient-specific prostheses. Three validated subject-specific musculoskeletal models facilitated the analysis of the individuals. patellofemoral biomechanics. The technique can potentially be employed by orthopaedic surgeons to visualise the change that an osteotomy or patellofemoral arthroplasty might induce on an individual.s patellofemoral joint. This technique might aid in the development of a tool to assist biomedical engineers in the development of new patellofemoral prostheses. Most importantly, the outcome of surgical intervention may be predicted beforehand, and a treatment procedure may be tailored to optimally fit the patellofemoral biomechanics of that individual.