Browsing by Author "du Plessis, Nelita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?(2020-04) Eribo, Osagie; du Plessis, Nelita; Ozturk, Mumin; Guler, RetoAlthough tuberculosis (TB) is a curable disease, it remains the foremost cause of death from a single pathogen. Globally, approximately 1.6 million people died of TB in 2017. Many predisposing factors related to host immunity, genetics and the environment have been linked to TB. However, recent evidence suggests a relationship between dysbiosis in the gut microbiome and TB disease development. The underlying mechanism(s) whereby dysbiosis in the gut microbiota may impact the different stages in TB disease progression, are, however, not fully explained. In the wake of recently emerging literature, the gut microbiome could represent a potential modifiable host factor to improve TB immunity and treatment response. Herein, we summarize early data detailing (1) possible association between gut microbiome dysbiosis and TB (2) the potential for the use of microbiota biosignatures to discriminate active TB disease from healthy individuals (3) the adverse effect of protracted anti-TB antibiotics treatment on gut microbiota balance, and possible link to increased susceptibility to Mycobacterium tuberculosis re-infection or TB recrudescence following successful cure. We also discuss immune pathways whereby the gut microbiome could impact TB disease and serve as target for clinical manipulation.
- ItemIsolation of B-cells using Miltenyi MACS bead isolation kits(Public Library of Science, 2019-03-20) Moore, Dannielle K.; Motaung, Bongani; du Plessis, Nelita; Shabangu, Ayanda N.; Loxton, Andre G.; SU-IRG ConsortiumThis article describes the procedures used to isolate pure B-cell populations from whole blood using various Miltenyi magnetic-activated cell sorting (MACS) bead Isolation kits. Such populations are vital for studies investigating the functional capacity of B-cells, as the presence of other cell types may have indirect effects on B-cell function through cell-cell interactions or by secretion of several soluble molecules. B-cells can be isolated by two main approaches: 1) Negative selection—in which B-cells remain “untouched” in their native state; this is advantageous as it is likely that B-cells remain functionally unaltered by this process. 2) Positive selection–in which B-cells are labelled and actively removed from the sample. We used three Negative B-cell isolation kits as well as the Positive B-cell isolation kit from Miltenyi and compared the purity of each of the resulting B-cells fractions. Contamination of isolated B-cell fractions with platelets was the conclusive finding for all of the isolation techniques tested. These results illustrate the inefficiency of current available MACS B-cell isolation kits to produce pure B-cell populations, from which concrete findings can be made. As such we suggest cell sorting as the preferred method for isolating pure B-cells to be used for downstream functional assays.