Browsing by Author "Yu, Xiaojing"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDoes the law of diminishing returns in leaf scaling apply to vines? - Evidence from 12 species of climbing plants(Elsevier, 2019) Shi, Peijian; Li, Yirong; Hui, Cang; Ratkowsky, David A.; Yu, Xiaojing; Niinemets, UloENGLISH ABSTRACT: Shapes, sizes and biomass investment per unit area (LMA) of vine leaves are characterized by high diversity that results in variation in leaf arrangement, light harvesting efficiency and photosynthetic activity. There exists a scaling relationship between leaf dry mass and surface area for many broad-leaved plants, and most estimates of the scaling exponent are greater than unity, implying that they follow the "law of diminishing returns", i.e. that larger leaves require progressively greater investments of dry mass and accordingly have a greater LMA. Previous studies have primarily focused on trees and crops and there are few data available for vines. Yet, as vines have lower support investments in stems than self-supporting plants, they can have larger biomass investments in support within the leaves and stronger rise of biomass costs with increasing leaf area. In this study, we chose twelve species of vines (five woody vines and seven herbaceous vines) to investigate the following scientific questions: (i) whether there are significant differences in LMA between woody and herbaceous vines, (ii) whether leaf dry mass and surface area scaling relationships show evidence of diminishing returns in vines. We observed that LMA values of woody vines were significantly higher than those of the herbaceous vines. Leaf dry mass vs. surface area scaling relationship followed the law of diminishing returns in all 12 studied vine species. The existence of diminishing returns indicates that there is a trade-off between leaf surface area expansion and the energy investment for vines to support leaf physical structures. (C) 2019 The Authors. Published by Elsevier B.V.
- ItemEffects of salt stress on the leaf shape and scaling of pyrus betulifolia bunge(MDPI, 2019) Yu, Xiaojing; Shi, Peijian; Hui, Cang; Miao, Lifei; Liu, Changlai; Zhang, Qiuyue; Feng, ChaonianLeaf shape can reflect the survival and development of plants in different environments. In particular, leaf area, showing a scaling relationship with other leaf-shape indices, has been used to evaluate the extent of salt stress on plants. Based on the scaling relationships between leaf area and other leaf-shape indices in experiments at different levels of salt stress, we could examine which leaf-shape indices are also related to salt stress. In the present study, we explored the effects of different salt concentration treatments on leaf dry mass per unit area (LMA), the quotient of leaf perimeter and leaf area (QPA), the quotient of leaf width and length (QWL), the areal quotient (AQ) of left and right sides of a leaf and the standardized index (SI) for bilateral symmetry. We treated Pyrus betulifolia Bunge under NaCl salt solution of 2‰, 4‰ and 6‰, respectively, with fresh water with no salt as the control. The reduced major axis (RMA) was used to fit a linear relationship of the log-transformed data between any leaf trait measures and leaf area. We found that leaf fresh weight and dry weight decrease with salt concentration increasing, whereas the exponents of leaf dry weight versus leaf area exhibit an increasing trend, which implies that the leaves expanding in higher salt environments are prone to have a higher cost of dry mass investment to increase per unit leaf area than those in lower salt environments. Salt concentration has a significant influence on leaf shape especially QWL, and QWL under 6‰ concentration treatment is significantly greater than the other treatments. However, there is no a single increasing or decreasing trend for the extent of leaf bilateral symmetry with salt concentration increasing. In addition, we found that the scaling exponents of QPA versus leaf area for four treatments have no significant difference. It indicates that the scaling relationship of leaf perimeter versus leaf area did not change with salt concentration increasing. The present study suggests that salt stress can change leaf functional traits especially the scaling relationship of leaf dry weight versus leaf area and QWL, however, it does not significantly affect the scaling relationships between leaf morphological measures (including QPA and the extent of leaf bilateral symmetry) and leaf area.
- ItemLeaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species(2020-02-23) Shi, Peijian; Niinemets, Ulo; Hui, Cang; Niklas, Karl J.; Yu, Xiaojing; Holscher, DirkThe leaves of vines exhibit a high degree of variability in shape, from simple oval to highly dissected palmatifid leaves. However, little is known about the extent of leaf bilateral symmetry in vines, how leaf perimeter scales with leaf surface area, and how this relationship depends on leaf shape. We studied 15 species of vines and calculated (i) the areal ratio (AR) of both sides of the lamina per leaf, (ii) the standardized symmetry index (SI) to estimate the deviation from leaf bilateral symmetry, and (iii) the dissection index (DI) to measure leaf-shape complexity. In addition, we examined whether there is a scaling relationship between leaf perimeter and area for each species. A total of 14 out of 15 species had no significant differences in average ln(AR), and mean ln(AR) approximated zero, indicating that the areas of the two lamina sides tended to be equal. Nevertheless, SI values among the 15 species had significant differences. A statistically strong scaling relationship between leaf perimeter and area was observed for each species, and the scaling exponents of 12 out of 15 species fell in the range of 0.49-0.55. These data show that vines tend to generate a similar number of left- and right-skewed leaves, which might contribute to optimizing light interception. Weaker scaling relationships between leaf perimeter and area were associated with a greater DI and a greater variation in DI. Thus, DI provides a useful measure of the degree of the complexity of leaf outline.
- ItemScaling relationships between leaf shape and area of 12 rosaceae species(MDPI, 2019) Yu, Xiaojing; Hui, Cang; Sandhu, Hardev S.; Lin, Zhiyi; Shi, PeijianLeaf surface area (A) and leaf shape have been demonstrated to be closely correlated with photosynthetic rates. The scaling relationship between leaf biomass (both dry weight and fresh weight) and A has been widely studied. However, few studies have focused on the scaling relationship between leaf shape and A. Here, using more than 3600 leaves from 12 Rosaceae species, we examined the relationships of the leaf-shape indices including the left to right side leaf surface area ratio (AR), the ratio of leaf perimeter to leaf surface area (RPA), and the ratio of leaf width to length (RWL) versus A. We also tested whether there is a scaling relationship between leaf dry weight and A, and between PRA and A. There was no significant correlation between AR and A for each of the 12 species. Leaf area was also found to be independent of RWL because leaf width remained proportional to leaf length across the 12 species. However, there was a negative correlation between RPA and A. The scaling relationship between RPA and A held for each species, and the estimated scaling exponent of RPA versus A approached −1/2; the scaling relationship between leaf dry weight and A also held for each species, and 11 out of the 12 estimated scaling exponents of leaf dry weight versus A were greater than unity. Our results indicated that leaf surface area has a strong scaling relationship with leaf perimeter and also with leaf dry weight but has no relationship with leaf symmetry or RWL. Additionally, our results showed that leaf dry weight per unit area, which is usually associated with the photosynthetic capacity of plants, increases with an increasing A because the scaling exponent of leaf dry weight versus A is greater than unity. This suggests that a large leaf surface area requires more dry mass input to support the physical structure of the leaf.