Browsing by Author "Warren, Robin Mark"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemEmergence and spread of extensively and totally drug-resistant tuberculosis, South Africa(Centers for Disease Control and Prevention, 2013-03) Klopper, Marisa; Warren, Robin Mark; Hayes, Cindy; Gey van Pittius, Nicolaas Claudius; Streicher, Elizabeth M.; Muller, Borna; Sirgel, Frederick Adriaan; Chabula-Nxiweni, Mamisa; Hoosain, Ebrahim; Coetzee, Gerrit; Van Helden, Paul David; Victor, Thomas Calldo; Trollip, Andre PhillipENGLISH ABSTRACT: Factors driving the increase in drug-resistant tuberculosis (TB) in the Eastern Cape Province, South Africa, are not understood. A convenience sample of 309 drug-susceptible and 342 multidrug-resistant (MDR) TB isolates, collected July 2008–July 2009, were characterized by spoligotyping, DNA fingerprinting, insertion site mapping, and targeted DNA sequencing. Analysis of molecular-based data showed diverse genetic backgrounds among drug-sensitive and MDR TB sensu stricto isolates in contrast to restricted genetic backgrounds among pre–extensively drug-resistant (pre-XDR) TB and XDR TB isolates. Second-line drug resistance was significantly associated with the atypical Beijing genotype. DNA fingerprinting and sequencing demonstrated that the pre-XDR and XDR atypical Beijing isolates evolved from a common progenitor; 85% and 92%, respectively, were clustered, indicating transmission. Ninety-three percent of atypical XDR Beijing isolates had mutations that confer resistance to 10 anti-TB drugs, and some isolates also were resistant to para-aminosalicylic acid. These findings suggest the emergence of totally drug-resistant TB.
- ItemGenetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique(Public Library of Science, 2018) Machado, Adelina; Rito, Teresa; Ghebremichael, Solomon; Muhate, Nuelma; Maxhuza, Gabriel; Macuamule, Custodia; Moiane, Ivania; Macucule, Baltazar; Marranangumbe, Angelica Suzana; Baptista, Jorge; Manguele, Joaquim; Koivula, Tuija; Streicher, Elizabeth M.; Warren, Robin Mark; Kallenius, Gunilla; Van Helden, Paul; Correia-Neves, MargaridaBovine tuberculosis is a zoonotic disease with largely unknown impact in Africa, with risk factors such as HIV and direct contact with animals or consumption of Mycobacterium bovis infected animal products. In order to understand and quantify this risk and design intervention strategies, good epidemiological studies are needed. Such studies can include molecular typing of M. bovis isolates. The aim of this study was to apply these tools to provide novel information concerning the distribution of bovine tuberculosis in cattle in Mozambique and thereby provide relevant information to guide policy development and strategies to contain the disease in livestock, and reduce the risk associated with transmission to humans. A collection of 178 M. bovis isolates was obtained from cattle in Mozambique. Using spoligotyping and regions of difference analysis, we classified the isolates into clonal complexes, thus reporting the first characterisation of M. bovis strains in this region. Data from MIRU-VNTR typing was used to compare isolates from a number of African countries, revealing a deeply geographically structured diversity of M. bovis. Eastern Africa appears to show high diversity, suggesting deep evolution in that region. The diversity of M. bovis in Africa does not seem to be a function of recent importation of animals, but is probably maintained within each particular region by constant reinfection from reservoir animals. Understanding the transmission routes of M. bovis in Mozambique and elsewhere is essential in order to focus public health and veterinary resources to contain bovine tuberculosis.
- ItemA landscape of genomic alterations at the root of a near-untreatable tuberculosis epidemic(BMC (part of Springer Nature), 2020-02-04) Klopper, Marisa; Heupink, Tim Hermanus; Hill-Cawthorne, Grant; Streicher, Elizabeth M.; Dippenaar, Anzaan; De Vos, Margaretha; Abdallah, Abdallah Musa; Limberis, Jason; Merker, Matthias; Burns, Scott; Niemann, Stefan; Dheda, Keertan; Posey, James; Pain, Arnab; Warren, Robin MarkBackground: Atypical Beijing genotype Mycobacterium tuberculosis strains are widespread in South Africa and have acquired resistance to up to 13 drugs on multiple occasions. It is puzzling that these strains have retained fitness and transmissibility despite the potential fitness cost associated with drug resistance mutations. Methods: We conducted Illumina sequencing of 211 Beijing genotype M. tuberculosis isolates to facilitate the detection of genomic features that may promote acquisition of drug resistance and restore fitness in highly resistant atypical Beijing forms. Phylogenetic and comparative genomic analysis was done to determine changes that are unique to the resistant strains that also transmit well. Minimum inhibitory concentration (MIC) determination for streptomycin and bedaquiline was done for a limited number of isolates to demonstrate a difference in MIC between isolates with and without certain variants. Results: Phylogenetic analysis confirmed that two clades of atypical Beijing strains have independently developed resistance to virtually all the potent drugs included in standard (pre-bedaquiline) drug-resistant TB treatment regimens. We show that undetected drug resistance in a progenitor strain was likely instrumental in this resistance acquisition. In this cohort, ethionamide (ethA A381P) resistance would be missed in first-line drug-susceptible isolates, and streptomycin (gidB L79S) resistance may be missed due to an MIC close to the critical concentration. Subsequent inadequate treatment historically led to amplification of resistance and facilitated spread of the strains. Bedaquiline resistance was found in a small number of isolates, despite lack of exposure to the drug. The highly resistant clades also carry inhA promoter mutations, which arose after ethA and katG mutations. In these isolates, inhA promoter mutations do not alter drug resistance, suggesting a possible alternative role. Conclusion: The presence of the ethA mutation in otherwise susceptible isolates from ethionamide-naïve patients demonstrates that known exposure is not an adequate indicator of drug susceptibility. Similarly, it is demonstrated that bedaquiline resistance can occur without exposure to the drug. Inappropriate treatment regimens, due to missed resistance, leads to amplification of resistance, and transmission. We put these results into the context of current WHO treatment regimens, underscoring the risks of treatment without knowledge of the full drug resistance profile.
- ItemMargarida Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique(Public Library of Science, 2018) Machado, Adelina; Rito, Teresa; Ghebremichael, Solomon; Muhate, Nuelma; Maxhuza, Gabriel; Macuamule, Custodia; Moiane, Ivania; Macucule, Baltazar; Marranangumbe, Angelica Suzana; Baptista, Jorge; Manguele, Joaquim; Koivula, Tuija; Streicher, Elizabeth M.; Warren, Robin Mark; Kallenius, Gunilla; Van Helden, Paul; Correia-Neves, MargaridaENGLISH ABSTRACT: Bovine tuberculosis is a zoonotic disease with largely unknown impact in Africa, with risk factors such as HIV and direct contact with animals or consumption of Mycobacterium bovis infected animal products. In order to understand and quantify this risk and design intervention strategies, good epidemiological studies are needed. Such studies can include molecular typing of M. bovis isolates. The aim of this study was to apply these tools to provide novel information concerning the distribution of bovine tuberculosis in cattle in Mozambique and thereby provide relevant information to guide policy development and strategies to contain the disease in livestock, and reduce the risk associated with transmission to humans. A collection of 178 M. bovis isolates was obtained from cattle in Mozambique. Using spoligotyping and regions of difference analysis, we classified the isolates into clonal complexes, thus reporting the first characterisation of M. bovis strains in this region. Data from MIRU-VNTR typing was used to compare isolates from a number of African countries, revealing a deeply geographically structured diversity of M. bovis. Eastern Africa appears to show high diversity, suggesting deep evolution in that region. The diversity of M. bovis in Africa does not seem to be a function of recent importation of animals, but is probably maintained within each particular region by constant reinfection from reservoir animals. Understanding the transmission routes of M. bovis in Mozambique and elsewhere is essential in order to focus public health and veterinary resources to contain bovine tuberculosis.
- ItemMolecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa : a systematic review(BMC (part of Springer Nature), 2020) Chisompola, Namaunga Kasumu; Streicher, Elizabeth Maria; Muchemwa, Chishala Miriam Kapambwe; Warren, Robin Mark; Sampson, Samantha LeighBackground: The burden of drug resistant tuberculosis in Africa is largely driven by the emergence and spread of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. MDR-TB is defined as resistance to isoniazid and rifampicin, while XDR-TB is defined as MDR-TB with added resistance to any of the second line injectable drugs and any fluoroquinolone. The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic. The molecular mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using various genotyping tools. The study aimed to analyse the drug resistant lineages in circulation and transmission dynamics of these lineages in Africa by describing outbreaks, nosocomial transmission and migration. Viewed as a whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa. Methods: A systematic review was performed on peer reviewed original research extracted from PubMed reporting on the lineages associated with drug resistant TB from African countries, and their association with outbreaks, nosocomial transmission and migration. The search terms “Tuberculosis AND drug resistance AND Africa AND (spoligotyping OR molecular epidemiology OR IS6110 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)” were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa. Results: Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance within the continent. Lineage 4 predominates across Africa demonstrating the ability of “modern strains” to adapt and spread easily. Most studies under review reported primary drug resistance as the predominant type of transmission. Drug resistant TB strains are associated with community and nosocomial outbreaks involving MDRand XDR-TB strains. The under-use of molecular epidemiological tools is of concern, resulting in gaps in knowledge of the transmission dynamics of drug resistant TB on the continent. Conclusions: Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse genotypes are driving the epidemiology of drug resistant TB across the continent.
- ItemOn the impact of the pangenome and annotation discrepancies while building protein sequence databases for bacteria proteogenomics(Frontiers Media, 2019) Machado, Karla C. T.; Fortuin, Suereta; Tomazella, Gisele Guicardi; Fonseca, Andre F.; Warren, Robin Mark; Wiker, Harald G.; De Souza, Sandro Jose; De Souza, Gustavo AntonioENGLISH ABSTRACT: In proteomics, peptide information within mass spectrometry (MS) data from a specific organism sample is routinely matched against a protein sequence database that best represent such organism. However, if the species/strain in the sample is unknown or genetically poorly characterized, it becomes challenging to determine a database which can represent such sample. Building customized protein sequence databases merging multiple strains for a given species has become a strategy to overcome such restrictions. However, as more genetic information is publicly available and interesting genetic features such as the existence of pan- and core genes within a species are revealed, we questioned how efficient such merging strategies are to report relevant information. To test this assumption, we constructed databases containing conserved and unique sequences for 10 different species. Features that are relevant for probabilistic-based protein identification by proteomics were then monitored. As expected, increase in database complexity correlates with pangenomic complexity. However, Mycobacterium tuberculosis and Bordetella pertussis generated very complex databases even having low pangenomic complexity. We further tested database performance by using MS data from eight clinical strains from M. tuberculosis, and from two published datasets from Staphylococcus aureus. We show that by using an approach where database size is controlled by removing repeated identical tryptic sequences across strains/species, computational time can be reduced drastically as database complexity increases.
- ItemThe plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems(BioMed Central, 2016-03) Newton-Foot, Mae; Warren, Robin Mark; Sampson, Samantha Leigh; Van Helden, Paul David; Gey van Pittius, Nicolaas ClaudiusBACKGROUND: The genome of Mycobacterium tuberculosis contains five copies of the ESX gene cluster, each encoding a dedicated protein secretion system. These ESX secretion systems have been defined as a novel Type VII secretion machinery, responsible for the secretion of proteins across the characteristic outer mycomembrane of the mycobacteria. Some of these secretion systems are involved in virulence and survival in M. tuberculosis; however they are also present in other non-pathogenic mycobacteria, and have been identified in some non-mycobacterial actinomycetes. Three components of the ESX gene cluster have also been found clustered in some gram positive monoderm organisms and are predicted to have preceded the ESX gene cluster. RESULTS: This study used in silico and phylogenetic analyses to describe the evolution of the ESX gene cluster from the WXG-FtsK cluster of monoderm bacteria to the five ESX clusters present in M. tuberculosis and other slow-growing mycobacteria. The ancestral gene cluster, ESX-4, was identified in several nonmycomembrane producing actinobacteria as well as the mycomembrane-containing Corynebacteriales in which the ESX cluster began to evolve and diversify. A novel ESX gene cluster, ESX-4EVOL, was identified in some non-mycobacterial actinomycetes and M. abscessus subsp. bolletii. ESX-4EVOL contains all of the conserved components of the ESX gene cluster and appears to be a precursor of the mycobacterial ESX duplications. Between two and seven ESX gene clusters were identified in each mycobacterial species, with ESX-2 and ESX-5 specifically associated with the slow growers. The order of ESX duplication in the mycobacteria is redefined as ESX-4, ESX-3, ESX-1 and then ESX-2 and ESX-5. Plasmid-encoded precursor ESX gene clusters were identified for each of the genomic ESX-3, -1, -2 and -5 gene clusters, suggesting a novel plasmid-mediated mechanism of ESX duplication and evolution. CONCLUSIONS: The influence of the various ESX gene clusters on vital biological and virulence-related functions has clearly influenced the diversification and success of the various mycobacterial species, and their evolution from the non-pathogenic fast-growing saprophytic to the slow-growing pathogenic organisms.