Browsing by Author "Wang, Yao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection(Springer Nature, 2022-06-17) Cao, Yunlong; Yisimayi, Ayijiang; Jian, Fanchong; Song, Weiliang; Xiao, Tianhe; Wang, Lei; Du, Shuo; Wang, Jing; Li, Qianqian; Chen, Xiaosu; Yu, Yuanling; Wang, Peng; Zhang, Zhiying; Liu, Pulan; An, Ran; Hao, Xiaohua; Wang, Yao; Wang, Jing; Feng, Rui; Sun, Haiyan; Zhao, Lijuan; Zhang, Wen; Zhao, Dong; Zheng, Jiang; Yu, Lingling; Li, Can; Zhang, Na; Wang, Rui; Niu, Xiao; Yang, Sijie; Song, Xuetao; Chai, Yangyang; Hu, Ye; Shi, Yansong; Zheng, Linlin; Li, Zhiqiang; Gu, Qingqing; Shao, Fei; Huang, Weijin; Jin, Ronghua; Shen, Zhongyang; Wang, Youchun; Wang, Xiangxi; Xiao, Junyu; Xie, Xiaoliang SunneySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
- ItemTanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots(Elsevier, 2019) Deng, Changping; Hao, Xiaolong; Shi, Min; Fu, Rong; Wang, Yao; Zhang, Yi; Zhou, Wei; Feng, Yue; Makunga, Nokwanda P.; Kai, GuoyinTanshinones are the main bioactive diterpenes in Salvia miltiorrhiza Bunge, are widely used for treating cardiovascular and cerebrovascular diseases. However, the biosynthetic mechanisms of these compounds have not yet been fully explained. In this study, a transcription factor named SmWRKY2 was isolated and functionally characterized. Multiple sequence analysis indicated it was classified into subgroup I of the WRKY family. Expression pattern showed that SmWRKY2 was mainly expressed in the stem and leaf and was inducible by methyl jasmonate (MeJA) treatment. Subcellular localization showed that SmWRKY2 was localized in the nucleus. Overexpression of SmWRKY2 in S. miltiorrhiza hairy roots significantly increased the expression of SmDXS2 and SmCPS, resulting in increased accumulation of tanshinones and the highest total tanshinone content was detected in OE-SmWRKY2-1 line, which was 1.83 times of the control. Meanwhile, tanshinone production was slightly reduced in the antisense-SmWRKY2 line. Dual-Luciferase assay showed that SmWRKY2 can positively regulate SmDXS2 and SmCPS expression, However, Y1H and EMSA experiments indicate that SmWRKY2 only binds to the W-box of the SmCPS promoter. Our study shows that SmWRKY2 is a positive regulator of tanshinone biosynthesis by mainly activating SmCPS. This study thus sheds new light on the regulatory role of SmWRKY2 in tanshinone biosynthesis.